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1
Introduction

The first radiograph of a human body part was made by Wilhelm Conrad Röntgen
of his wife’s hand (Figure 1.1). His discovery of x-rays in 1895 marks the beginning
of radiology, a field of medicine that would become indispensable to (non-invasive)
diagnostics. It is not remarkable that Röntgen chose a human hand as a subject
to demonstrate his invention. A hand appeared relatively easy to image with x-
rays due to its size and the slimness of its bones and tissue. Another, and maybe
an even more important aspect is that the hand is particularly appealing to one’s
imagination. It consists of a large number of bones and joints which together enable
a complex set of functions. Our hands are our main tools, we can coordinate their
movements with great precision and flexibility in combination with considerable
strength. Touching, grabbing, holding and moving things around are common
functions that we need while performing our daily tasks and work. Besides for
practical tasks, we also use our hands for social interactions, for example when
shaking hands or making gestures while we talk. Since we use our hands for so
many things, they are extremely valuable to us, and any discomfort to them soon
affects our daily life.

Unfortunately, taking good care of our hands and avoiding dangerous tasks
does not guarantee a lifelong, problem-free use of our hands. Rheumatoid arthri-
tis (RA) and osteoarthritis (OA) are well-known examples of rheumatic diseases
that can cause pain and severe damage to joints in the entire body. Often the first
signs of these diseases are noted in the joints of the hands and feet. Besides pain
and swelling noted by the patient, there are also effects that can be better seen on
a radiograph. As already observed by Röntgen, x-rays provide an excellent means
to visualize skeletal structures. Even nowadays, with newer 3D imaging techniques

1



2 Chapter 1. Introduction

available such as MRI and CT, plain 2D radiographs play an important role in
diagnosing and monitoring rheumatic diseases. The value of imaging techniques
can be further increased by using the computer for image processing and visualiza-
tion. By using digitized radiographs it is possible to make complex measurements
and to automate time-consuming tasks. Though various efforts are being pursued,
currently such techniques are not yet a common practice in rheumatology. In this
thesis we investigate how various image processing techniques can be applied to
assess bone damage. We have specifically focused our efforts on radiograps of the
hands. However, most subjects and methods that we address in this thesis are
also applicable to radiographs of the feet (and possibly also other body parts).

This introduction continues with some background information to support the
topics of this thesis. In the next section, Section 1.1, we present a radiograph of
the hand skeleton and list the names of the bones and joints that are relevant to
hand radiography. Next, Section 1.2 provides an introduction to the rheumatic
diseases RA and OA. Before going into detail about hand radiography, the basic
principles of radiography are explained in Section 1.3. In the following Section 1.4
it is explained which aspects of hand radiographs are of interest for the assessment

Figure 1.1: First radiograph of a human body part made by Wilhelm Conrad Röntgen.
(Source: Reynolds Historical Library)
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Figure 1.2: Bones and joints of the hand. The labels refer to the abbreviations of the
bones and the joints listed in Tables 1.1 and 1.2

of bone damage and disease activity. Section 1.5 and Section 1.6 present the
research objectives and outline of this thesis.

1.1 Bones of the hand

The human hand consists of 27 bones (excluding sesamoid bones, which are de-
scribed further on), 19 bones in the fingers and 8 bones in the wrist. Figure 1.2
shows a radiograph in which all hand bones are visible. Anatomically the fingers
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Part Bone name Abbreviation

Fingers Distal phalanx DP
Middle or intermediate phalanx MP
Proximal phalanx PP
Metacarpal bone MC

Wrist Trapezium Tm
Trapezoid Td
Capitate C
Hamate H
Scaphoid S
Lunate L
Triquetrum (Triangular) Tr
Pisiform P

Forearm Radius R
Ulna U

Table 1.1: Names of the bones in the hand.

Joint name Abbreviation

Distal interphalangeal joint DIP
Proximal interphalangeal joint PIP
Metacarpophalangeal joint MCP
Carpometacarpal joint CMC

Table 1.2: Names of joints in the hand.

are numbered 1–5 starting with the thumb. Each finger, with exception of the
thumb, consists of one metacarpal (MC) bone and three phalanges. The thumb
differs in that it lacks a middle phalanx. The phalanges are named with the at-
tributes proximal, middle and distal, indicating their location with respect to the
body. The metacarpals connect the phalanges with the wrist (or carpal) bones.
The carpus consists of eight small bones and is connected to the radius and ulna
of the lower arm. Table 1.1 lists the names of the hand bones and their abbrevi-
ations. The joints between the phalanges are named interphalangeal joints. The
knuckles, the joints between the metacarpals and the phalanges, are the metacar-
pophalangeal joints. The carpometacarpal joints connect the metacarpals with
the carpal bones. In Figure 1.2 the locations of these bones and joints have been
indicated. The abbreviations of the joints have been listed in Table 1.2.

Besides the aforementioned bones, several sesamoid bones are often visible in
a hand radiograph. The number and locations of these small bones vary between
persons. Usually, two can be found near the first MCP joint, one or two near
MCP–2 and another near MCP–5. Sometimes they are also present near one of
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the other MCP joints, near the interphalangeal joint of the thumb, or near the
second DIP joint. Sesamoid bones are embedded within the tendons passing over
the joint. Their function is to protect the tendon and to change its angle [2].

1.2 Rheumatic diseases

Rheumatism is a non-specific term referring to a variety of disorders marked by
inflammation, degeneration, or metabolic derangement of connective tissue struc-
tures [3]. Especially the joints, but also organs such as the heart, kidneys, lungs
and skin can be affected. The most common rheumatic disorders are RA and OA.
Other examples are bursitis, fibromyalgia and ankylosing spondylitis.

In our study the focus is on hand radiographs of patients with RA. As the
joint damage caused by OA is in some aspects similar to that observed with RA,
various subjects and methods discussed in this thesis are also relevant for OA. In
the following two subsections both diseases are described.

1.2.1 Rheumatoid arthritis

RA is a chronic systemic inflammatory autoimmune disease that causes pain,
swelling and stiffness in synovial joints (Figure 1.3). Multiple joints are usually
affected in a symmetric pattern on both sides of the body. Commonly affected
joints by RA include the hands, feet, elbows, shoulders, neck and ankles. In ad-
dition, multiple organ systems can be affected. The estimated prevalence rate is
approximately 1% worldwide, with women more than twice as likely to develop
the disease as men [4]. RA can occur at all ages, but often the onset is between
the ages of 30 and 50. The cause of RA is still unknown, but it is suspected that
genetic, environmental, hormonal and infectious factors play a role [4]. The disease
activity usually changes over time, the degree of tissue inflammation decreasing
and symptoms disappearing for a period of time.

Pathophysiology Although the generation and development of RA is still not
fully understood, it is suspected that it is initiated by a T-cell reaction to an (as
yet unidentified) antigen [5]. T-cells are a type of white blood cells that play
an important role in the control of an immune response. These cells produce T-
cell cytokines (proteins that serve as chemical messengers between cells) which
lead to the recruitment of inflammatory (white blood) cells, including neutrophils,
macrophages and B-cells. It is suspected that B-cells make a significant con-
tribution to the inflammatory process, as they produce autoantibodies known as
rheumatoid factor. These proteins form immune complexes which lead to a further
increase of the inflammation.

Normal synovial tissue consists of an intimal lining of one to three cell layers and
the synovial sublining which connects with the joint capsule. The intimal lining
consists mainly of macrophages and fibroblasts. The sublining contains scattered
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Normal joint Joint affected by RA

Joint
capsule

Synovial
membrane

Synovial
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Bone

Cartilage

Erosions

Inflamed
synovial

membrane
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capsule

Figure 1.3: A normal synovial joint and one affected by RA.

blood vessels, fat cells and fibroblasts. Macrophages are large white blood cells
that destroy foreign and potential harmful particles. Fibroblast cells can form
connective tissue and lubrication ingredients for the synovial fluid and cartilage
surface. During the inflammation, the number of cell layers (macrophages and
fibroblasts) in the intimal lining of the synovium increases and new networks of
small blood vessels are formed in the synovium.

In the following phase, the inflamed synovium begins to grow irregularly, and
through several mechanisms between macrophages and fibroblasts bone resorptive
cells named osteoclasts are formed. Osteoclasts can produce enzymes named ma-
trix metalloproteinases, which are thought to be largely responsible for cartilage
and bone degradation in RA [5]. At the synovial interface with the bone, the syn-
ovial tissue can become invasive, forming of a mass of tissue called pannus. This
process leads to joint erosions (Figure 1.3).

Further joint destruction is caused by proteins released by white blood cells.
Over time, also other tissues around the joint, such as ligaments, tendons and
muscles can become inflamed. As the cartilage lining of a joint degrades and the
bone surface erodes, the range of movement of the joint becomes impaired and
deformity occurs.

Typical deformities for the hand are ulnar deviation of the fingers, Boutonnière
deformity (hyperflexion at the PIP joint with hyperextension at the DIP joint),
and swan-neck deformity (hyperextension at the PIP joint, hyperflexion at the DIP
joint) [6]. The thumb may develop a subluxation and fixed flexion at the MCP
joint, and hyperextension at the interphalangeal joint. Figure 1.4 illustrates both
Boutonnière deformity and swan-neck deformity. A typical RA hand is depicted
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Boutonnière
deformity

Swan-neck
deformity

Figure 1.4: Typical RA deformities: Boutonnière deformity and swan-neck deformity.
(Source: Merck&Co., Inc. http: // www. merck. com )

Figure 1.5: Typical appearance of a hand affected by RA: swelling and dislocations of
joints, ulnar deviation of the fingers and deformity of the little finger. (Source: CH8
http: // www. ch8. ch )

in Figure 1.5.

Diagnosis Commonly a diagnosis begins with a review of the history of symp-
toms of the patient and an examination of the joints for inflammations, deformities
and the presence of rheumatoid nodules [7, 8]. Also other parts of the body are
examined for inflammations. The diagnosis of RA is usually based on a combina-
tion of symptoms, including the distribution of the inflamed joints, and the blood
and x-ray findings.

There are several blood tests that play a role in diagnosing RA. Some of these
tests can be used to detect abnormal antibodies, such as the rheumatoid factor,
which can be found in 80% of the patients [9]. Other abnormal antibodies that fre-
quently present in RA patients are citrulline antibodies and antinuclear antibodies
(ANA) [7].

The sedimentation rate (ESR) is a blood test which measures how fast red
blood cells reach the bottom of a vertical test tube. The ESR is usually faster
during any inflammatory activity in the body, including joint inflammation. This

http://www.merck.com
http://www.ch8.ch
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method is considered to be a crude measure [7]. Another blood test for measuring
the disease activity is based on the increased presence of the C-reactive protein.

The results of the aforementioned blood tests can also be abnormal in other
systemic autoimmune and inflammatory conditions. Therefore these tests alone
are not sufficient for a reliable diagnosis of RA.

Besides the blood, also the synovial fluid can be examined by means of arthro-
centesis. In this procedure the doctor uses a needle and syringe to drain some
synovial fluid out of the joint. This fluid can be analyzed to exclude other possible
causes of inflammation, such as infection and gout. Sometimes arthrocentesis is
also used to relieve joint swelling and pain.

In an early stage of RA, radiographs of joints may be normal or only show
swelling of soft tissues. As the disease progresses, narrowing of joint space and
erosions may become visible. Also the bone structure and the bone mineral den-
sity (BMD) may change. Radiographic analysis is discussed in more detail in
Section 1.4.

Treatment Currently there is no known cure for RA and treatments are mainly
based on pain relief, reduction of inflammation and restoration of function. Two
classes of medication are used in treating RA: anti-inflammatory agents and
disease-modifying anti-rheumatic drugs (DMARDs) [7]. These DMARDS slow
down the disease progress.

The group of nonsteroidal anti-inflammatory drugs (NSAIDs), such as di-
clofenac and ibuprofen, belong to the first class. These drugs are ‘fast-acting’
and reduce pain and inflammation. There are more than ten NSAIDs, which
may differ in effectiveness and side effects per patient. When NSAIDs are ineffec-
tive, or during severe flares of disease activity, corticosteroids are commonly used.
Well-known examples are prednisone and triamcinolone. Administration of these
medications is usually orally, but sometimes by injection directly into tissues and
joints. Corticosteroids are very effective in reducing inflammation, and in restor-
ing joint mobility. Unfortunately the effects last for a relatively short period and
there can be serious side effects.

In the past corticosteroids were seen as part of the first line of medication. In
the last decade it has been found that, especially in early RA, low dosages are
effective in disease control and limit joint destruction [10]. Therefore they are now
considered as DMARDs.

Other DMARD examples, which prevent joint destruction, but are not directly
anti-inflammatory, are gold salts, methotrexate and hydroxychloroquine. These
medications are considered to be ‘slow-acting’, as they typically take weeks or
months to become effective. Furthermore, newer biologic agents are now available
that block the effects of specific proteins that trigger and sustain the inflammation
response. Administration of these agents is usually intravenous, and they can be
combined with other medications [7].

Besides medication, also exercise is an important part of RA treatment. This
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is to maintain fitness of the muscles and to preserve joint mobility and flexibility.

In an advanced stage of RA surgery may be recommended to restore mobility.
Such procedures can range from tissue repair to partial or complete replacement
of the joint.

1.2.2 Osteoarthritis

OA, also known as degenerative arthritis, is a chronic degenerative joint disease in
which low-grade inflammation results in the breakdown and loss of cartilage. OA
commonly affects the hands, feet, spine, and the large weight-bearing joints, such
as the hips and knees. As the disease progresses, the affected joints appear larger,
and become stiff and painful.

The exact cause of OA is not yet known. Often multiple members of the same
family are affected, suggesting genetic factors to play an important role [11]. Also
severe stress on joints due to obesity or heavy work is related to OA. Other sus-
pected causes include repeated trauma or surgery to the joint structures, abnormal
joints at birth, gout, diabetes and other hormone disorders. In the Netherlands,
one in thirteen persons has OA [12]. OA can occur at all ages, but is most common
at ages above 45.

Pathophysiology In the first stage of OA, the water content of the cartilage
decreases and the protein production decreases [11]. This makes the cartilage less
resilient and vulnerable to degradation. Eventually, cartilage begins to break down
and small cracks are formed. When breakdown products from the cartilage are
released into the synovial space, this can result in inflammation of the surrounding
joint capsule. This inflammation is generally mild compared to that which occurs
in RA. Over time, loss of cartilage causes friction between the bones, leading to
pain and limitation of joint mobility. Often these effects are worsened by the
growth of spurs near the joint margins. These bone outgrowths are induced by
the inflammation of the cartilage. Examples of such spurs are Heberden’s nodes
and Bouchard’s nodes, which are located at the distal interphalangeal joints and
the proximal interphalangeal joints respectively [11].

Diagnosis The diagnosis of OA is usually done by reviewing the history of symp-
toms of the patient, followed by an examination of inflammation and deformity of
the joints. Characteristic for OA is that pain in the joints increases with their use
throughout the day. This distinguishes OA from RA, as with RA the pain and
stiffness is usually severer in the morning. Further diagnosis can be done through
x-rays, by which spurs and joint space narrowing can be detected. OA itself can-
not be detected by blood tests, though often blood tests are done to exclude other
causes such as RA or gout [11].
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Treatment The damage caused by OA is irreversible, and typical treatment
consists of medication or other interventions that can reduce the pain of OA and
thereby improve the function of the joint. In many cases a mild analgesic (pain-
reducer) is sufficient. In more severe cases, NSAIDs are often prescribed to reduce
pain and inflammation. Occasionally corticosteroids are injected in the larger
joints, but the benefits of this treatment do not always outweigh the risks and side
effects [11].

Sometimes surgery can be used to realign deformed joints by bone removal. In
severe cases joints can be fused or replaced with an artificial joint.

1.3 Radiography

X-rays, or Roentgen-rays, are generally defined as electromagnetic radiation with
wavelengths between 0.01 and 10 nanometers (see Figure 1.6). This radiation can
be produced by accelerating electrons with an electric field in order to collide with
a metal target (the anode) such as tungsten or molybdenum. On collision with
a metal atom, a bound electron from the inner shell can be knocked out. The
created vacancy is subsequently filled by an electron from an higher energy level
and simultaneously an x-ray photon is excited. Figure 1.7 illustrates how this
process is achieved in an x-ray tube.

The energy of a photon can be calculated by:

E =
hc

λ
[eV], (1.1)

where h is Planck’s constant (4.136×10−15 eVs), c is the speed of light in [m/s], and
λ is its wavelength in [m]. The spectrum of the excited radiation depends on the
strength of the applied electric field (tube voltage U2 in Figure 1.7) and the type
of metal used for the anode. Figure 1.8 shows an approximate of the spectrum for
a tungsten tube with a tube voltage of 100 kVp. Evidently the maximum photon
energy is limited to 100 keV. The lowest energy photons are filtered by the tube,
and the highest intensity can typically be found at approximately one third of

Visible light

X-rays

Figure 1.6: The electromagnetic spectrum [13].
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the total spectral range. The high peaks are located at the energy levels that are
characteristic for the electron shells of the anode material [14]. The total intensity
of the x-ray beam is determined by the electron flow (or current) from the cathode
to the anode.

Interactions

X-rays can be characterized as energetic particles or waves that are able to ionize
an atom or molecule through atomic interactions. In radiography, there are two
types of interaction between x-rays and matter. The first occurs primarily with
lower energy x-rays and is known as the photoelectric effect. This effect takes place
when the energy of an x-ray photon is transferred to an entire atom. If the photon
has enough energy to eject one of the electrons from the atom’s inner shells, the
residual energy will be transferred to the ejected electron in the form of kinetic

anode

cathode

U1 U2

X-rays

Figure 1.7: Schematics of an x-ray tube. Source U1 controls the number of excited
electrons at the cathode. Source U2 applies an electric field to accelerate electrons in the
direction of the anode.
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Figure 1.8: X-ray spectrum from a tube with a tungsten anode and an applied tube
voltage of 100 kVp.
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energy.
The second type of interaction is known as the Compton effect. This effect

occurs when a high energy x-ray photon collides with an electron in the outer
shell of an atom. The electron is freed from the atom and both particles may
be deflected at an angle to the direction of the path of the incident x-ray. As
the photon has transferred some of it’s energy, it will continue with a longer
wavelength. If enough energy is left in the photon, new interactions may follow.
These deflections, accompanied by a change of wavelength, are known as Compton
scattering. In radiography Compton scattering can cause a decrease of image
contrast and an increase of noise. Severe scattering can be reduced by using an
anti-scattering grid which absorbs photons coming from other directions than from
the source.

Both interaction types contribute to the overall attenuation of x-rays in a ma-
terial. In general, the chance for interactions increases for higher density materials,
hence the attenuation of these materials is higher. For higher energy photons the
attenuation is generally less. X-ray attenuation in a material can be modeled by

I/I0 = e−µt, (1.2)

with I0 the incident intensity (proportional to the number of photons), I the
measured intensity transmitted through a layer of material with thickness t in
cm and linear attenuation coefficient µ in cm−1. In literature the latter material
property is often represented by the mass attenuation coefficient µ/ρ, where ρ is
the density in g/cm3. In this case the mass thickness x = ρt in g/cm2 is often
used:

I/I0 = e−(µ/ρ)x. (1.3)

Ionizing interactions caused by x-rays can be destructive to biological organ-
isms and can cause DNA damage in individual cells. To protect a patient from
unnecessary exposure to x-rays, a thin metallic sheet is commonly placed between
the source and target to filter out the lower energy ‘soft x-rays’. Soft x-rays, as
opposed to ‘hard x-rays’, do not have sufficient energy to pass through the target
and make it to the detector. Therefore they are not practical for imaging and only
cause unnecessary dose for the patient.

Detectors

In order to make a projection radiograph, a subject is placed between the x-ray
source and a detector. The x-rays that have not been absorbed by the subject
interact with the material of the detector generating a projection image. There
are several different types of detectors that are used for medical imaging.

Photographic plates or films are the oldest detectors, and provide a convenient
and easy means of recording projection images. Since photographic films are
commonly more sensitive to visible light than x-rays, they are placed between
two intensifying screens (converting absorbed x-rays to visible light) and packed
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Figure 1.9: Photostimulable phosphor plates and scanner by Fujifilm.

Figure 1.10: Indirect semiconductor detector panel produced by Canon.

in a light proof cartridge or paper envelope. After exposure, the films have to be
developed chemically in a processing facility. Film radiographs can be digitized
by using a transparency scanner or a digital camera. As this process is rather
laborious and expensive, these detectors are losing favor.

Photostimulable phosphor plates are reusable detectors that contain a special
class of phosphors. On interaction with x-rays, electrons are raised to a higher
energy state and remain trapped in the materials crystal lattice. To read out the
projection image, the detector is scanned by a small laser beam. When exposed
to this beam, electrons are freed and light is emitted. This light is collected by
a photomultiplier tube and converted to an electric signal which can be digitized
directly. This process is also referred to as computed radiography or digital radio-
graphy. An example of this system is displayed in Figure 1.9.

Nowadays indirect semiconductor detectors use a scintillator screen to convert
x-rays to visible light. A large array of small light-absorbing photodiodes attached
to this screen converts this light to electric signals which are processed by a com-
puter. This technique is commonly referred to as direct radiography. Figure 1.10
displays an example of this type of detector.

The exposure of the detector (and also the patient) increases approximately
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Figure 1.11: Follow up series of radiographic images of the second MCP joint of a
patient with progressive RA (from left to right with approximately two years intervals).

quadratically with the tube voltage. For a fixed tube voltage and filter, the
exposure of the detector is proportional to the tube current multiplied by the
time of operation. This number is commonly referred to as the mAs-number (in
milliampere-second), and its setting can be used to adjust the contrast of a radio-
graph.

1.4 Analysis of joint damage in radiographs

Radiographs are particularly suitable to visualize the shapes and structures of
objects with strong density variations such as bones surrounded by soft tissue.
Soft body tissues like muscles, tendons, ligaments, vessels, and also cartilage are
hard to discern from one another, because of their similar densities and mass
attenuation coefficients. This also means that it is difficult to identify inflamed
tissue when analyzing hand radiographs of patients diagnosed with RA. Although
inflammations generally manifest in soft tissue, also the bones and their mutual
position become indirectly affected as the disease progresses. Figure 1.11 shows
a two-year interval series of radiographs of a second MCP joint affected by RA.
As explained, inflamed tissue is not visible in these images. However, one can
observe that the texture of the bones gradually changes and severe erosions appear.
This damage is caused by invasive pannus tissue and bone degenerative proteins,
corresponding to the process described earlier in Section 1.2.1. Another noticeable
effect is the mutual position of the bones. As the cartilage degrades, gradually the
visible space between the bones narrows and joint luxation (dislocation) occurs.
The rate of this process can differ for each joint and may vary over the years.
Figure 1.12 shows a radiograph of a hand with severe joint damage in multiple
MCP joints. The ulnar deviation of the fingers is typical for RA. Also the wrist
has been affected with erosions and joint space narrowing.

A rheumatologist uses radiographs to support his diagnoses and to examine
possible joint damage. When earlier radiographs are available, he will try to
estimate the disease activity in order to evaluate the effects of the treatment. Often
such estimation is merely based on insight and experience. However, in large scale
research, for instance when evaluating drug treatments in clinical trials, there is a
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A B

Figure 1.12: Radiograph A displays a hand with ulnar deviation and severe joint damage
caused by RA. Radiograph B displays a normal hand.

high interest for precise quantification methods that can be used to measure disease
progression and activity. For this purpose, several scoring methods have been
proposed to quantify joint damage using radiographs [15]. Well-known examples
are the Larsen score, the Sharp score, the Sharp/van der Heijde method and the
Ratingen score [16, 17, 1, 18]. Typically these methods use a set of graphical
examples displaying different disease conditions for a selection of hand and foot
joints. Each disease condition is labeled with a value according to the grade of
joint damage. A trained observer then evaluates the radiographs by classifying the
indicated joints to the given conditions. An overall score can then be determined
from the total of values. Figure 1.13 displays an example chart of normal joints
that can be used to classify joint damage in finger joints to determine the Larsen
score.

Obviously, the aforementioned classification methods are subject to inter-
observer and intra-observer variability. For this reason researchers have been



16 Chapter 1. Introduction

Figure 1.13: Larsen score chart for the finger joints.

C MC

Figure 1.14: Measurement of the carpo/metacarpal ratio.

looking for objective methods based on true measurements. An example of such
measurements is the carpo/metacarpal ratio [19]. This ratio is calculated by divid-
ing the length of the carpus, measured from the mid base of the third metacarpal
to the volar-ulnar margin of the radius, by the length of the third metacarpal (see
Figure 1.14). As the cartilage in the wrist degrades and the small bones become
luxated under stress, the wrist becomes more compact and the carpo/metacarpal
ratio decreases.

A similar, but more direct approach to determine cartilage loss is to measure
joint space narrowing. This effect can already occur in an early stage of RA and is
quantified by measuring the change in distance between the bones of a joint over
time [20]. This distance is commonly referred to as the joint space width (JSW).
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Obviously, the described methods are time-consuming, and subject to errors
and subjectivity when performed by human observers. To overcome these prob-
lems, various efforts are being made to automate these methods using image pro-
cessing techniques. A comprehensive overview of methods that have been devel-
oped in the past decades is presented in Chapter 2

1.5 Research objective

The aim of our research is to develop towards an automated system for scoring
joint damage caused by RA using digitized x-rays of hands and feet. To achieve
this objective, we address the following research questions:

◦ Is it possible and feasible to measure joint space narrowing and erosion with
sufficient precision and reproducibility to replace measurement by human
experts?

◦ What is the validity of a newly developed score compared to the current gold
standard, the Sharp/van der Heijde score?

◦ What is the optimal combined score for joint damage in hand and feet caused
by RA?

◦ How can an automated measurement system be applied practically within
rheumatology?

Our conclusions and recommendation with respect to these questions are discussed
in Chapter 9.

1.6 Outline

First, in Chapter 2, Overview of automated scoring methods for RA assessment,
an overview is presented of (partially) automated scoring methods that have been
developed in the past. In Chapter 3, Quantifying joint space width, we investigate
different methods that are used to quantify the JSWs in hand radiographs. We
demonstrate that measurement results depend on the applied method and offer
a recommendation on which method to use. Chapter 4, Segmentation of bones
in hand radiographs, presents a method to detect the bones of the hand skeleton
in a radiograph. This image processing step is essential for the development of
fully automated assessment methods and enables further radiographic analysis.
In Chapter 5, Biometric features of the hand skeleton, we utilize the shape of
the bones as biometric features to identify patients and to verify the integrity of
datasets of hand radiographs.

A major challenge in automated RA assessment is JSW measurement. In
Chapter 6, Margin detection, we present a method to detect the joint margins
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in MCP and PIP joints. Subsequently we determine the JSW by calculating the
average distance between two margins. As joint space narrowing is generally a slow
process, it is important that measurements are precise. In Chapter 7, Acquisition
variability and JSW measurements, we discuss how acquisition parameters and
hand positioning can affect the projection image of the joint space. Besides joint
space narrowing, RA can also lead to erosions and changes in bone structure. In
Chapter 8, Revealing radiographic changes, we show how image subtraction can be
used to reveal bone damage, and explain how this method can be used to quantify
bone loss. Finally in Chapter 9 we present the Conclusions and recommendations
that follow from this thesis.



2
An overview of automated scoring

methods for RA

2.1 Introduction

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. It
is a chronic systemic inflammatory disorder that commonly affects the joints, par-
ticularly in the wrist, fingers and toes. Besides the joints, also other parts of
the body can be affected by RA. Since there is no proven cure for RA available
yet, current treatments mainly focus on pain relief, inflammation reduction, and
slowing down or stopping the process of joint damage. To prevent irreversible
joint damage, it is essential to detect RA at an early stage. To assess effective-
ness of drug-treatment it is necessary to monitor the progression of the disease.
Radiographs of hands and feet are often used to monitor the progression of joint
damage caused by RA. Several scoring methods have been proposed to quantify
joint damage using these radiographs [15]. Some make use of classification scores
for joint erosions and deformations, for example the Larsen score, the modified
Larsen score, the Sharp score, the Sharp/van der Heijde method and the Ratingen
score [16, 21, 22, 17, 1, 18]. Other methods are based on relative or absolute mea-
surements, for example by determining the carpal/metacarpal ratio, the JSW and
erosion volume [17, 19]. In general these methods are time-consuming and depend
on subjective visual readings [23]. In an early stage of RA it is important that the
applied scoring method is sensitive to small changes over time, so the effects of
medication can be monitored closely and treatments altered if necessary. Several

19
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studies have been conducted on this subject [24, 25, 26, 27].
To eliminate observer dependency and to make the assessment procedure faster,

more accurate and affordable, computer-assisted analysis may contribute to better
disease treatment. In the field of rheumatology several research groups (including
ours) have been inspired by these possibilities and have investigated the use of
image processing techniques to analyze radiological joint damage. The aim of
this chapter is to present a survey of the image processing methods that have
been developed during the past 20 years in the field of joint damage assessment
in radiographs of hands and feet. We consider the following image processing
operations as relevant: image enhancement, segmentation, JSW measurement,
erosion estimation and morphology analysis. Since all developed programs only
exist in an experimental setup and are not publicly available, comparisons have
to be based on published reports. In the next section we explain the applied
methods to find information related to this subject. Subsequently, in Section 2.3
we present a historical overview of the topics that have been addressed by the
various researchers. These topics are grouped and discussed more elaborately in
Section 2.4. In the final section we discuss the importance of digitized radiographs
and how to continue in future research.

2.2 Methods

We have consulted the following reference databases to find relevant informa-
tion: PubMed, a service of the National Library of Medicine which includes
citations from the Medline database (http://www.pubmed.org), Thomson’s ISI
Web of Knowledge (http://isi4.isiknowledge.com) and Elsevier’s ScienceDirect
(http://www.sciencedirect.com). The time span for the database searches extends
from January 1985 to July 2006 and the used keywords are: rheumatoid arthritis,
osteoarthritis, arthritis, computer-aided diagnoses, hand radiography, radiogra-
phy, image analysis, medical imaging, joint space, scoring methods, segmentation
and X-ray. Additional information was found through cross-references and with
Google’s internet search engine (http://www.google.com).

2.3 Historical overview

In the past twenty years, several groups have been searching for methods to analyze
joint damage in RA radiographs. Various efforts have been made to automate
JSW measurements for hand radiographs. Also methods for analyzing morphology
and structural characteristics of bones have been investigated. In this section
we present a brief chronological overview of what has been achieved in the field
of computerized RA assessment during this period. Later, in Section 2.4, we
categorize the various methods and discuss them in more detail.

1986 One of the first reports of computer assistance with RA analysis originates
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from Buckland-Wright et al. [28]. They use a digitizer tablet in combination
with a magnified stereoscopic view of microfocal radiographs of hands and
wrists to measure the erosion area. They show that measurements can be
done with good accuracy.

1987 One year later Browne, Gaydecki and colleagues describe an image process-
ing method to measure changes in bone density and shape of the proximal
phalanges [29, 30].

1989 Dacre and colleagues introduce a new radiographic scoring system [20]. They
use digital image analysis to measure the JSW in knee radiographs of patients
with RA.

Michael and Nelson presented a model-based system for automatic segmenta-
tion of bones from hand radiographs [31]. The objective of this experimental
study is to measure bone growth.

Allander et al. publish their research about measuring JSW of metacar-
pophalangeal (MCP) joints and proximal interphalangeal (PIP) joints [32].
They conclude that repeatability of measurements is better than that of
manual methods and is less observer dependent.

1993 Conrozier and Vignon et al. use a computer program to measure joint surface
area and mean JSW at the hip [33]. This program has been developed
over the years, and ten years later it is also used for JSW measurement of
osteoarthritic knees [34].

James et al. compare computerized JSW measurements with conventional
joint space narrowing scores in 1995 [35]. They show that their computerized
method increases precision and sensitivity to change.

1998 Duryea and colleagues describe a method for the segmentation of joint space
and phalanx margin locations on digitized hand radiographs [36]. This
method is reported to have excellent robustness and is expanded with a JSW
quantification method two years later [37]. In a 2003 publication Duryea et
al. expand this research to digital tomosynthesis in an attempt to measure
erosion volumes [38].

2000 Sharp et al. publish a study where they compare established scoring methods
with two computer based methods; one for measuring JSW and another for
erosion volume estimation [39].

2001 Angwin et al. continue the earlier work of James et al. and further enhance
their method for measuring the JSW [40, 35]. They also investigate the
reliability and sensitivity for different flexed positions of the hand.

2003 Wick and Peloschek et al. introduce a software tool for faster and more
efficient quantification of RA [41]. In this same year, Langs and Peloschek
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publish several papers about locating joints in hand radiographs and the
detection of bone contours [42, 43, 44]. They report to have developed ro-
bust methods that are accurate and easily transferable to other anatomical
structures. In 2005 they start a project to expand their software tool with
their developed image processing methods.

Bird et al. use the computer to measure erosion volumes in MRI images.
They report that their study demonstrates the feasibility, reliability, and
validity of these measurements [45].

Jensen et al. study bone densitometry of metacarpal joints [46]. They con-
clude that digital x-ray radiogrammetry (DXR) is better than dual x-ray ab-
sorptiometry (DXA) for detecting and monitoring periarticular osteoporosis
of the metacarpal bone.

2.4 Image processing methods for RA assessment

To enable automated assessment of joint damage in radiographs, one has to go
through several image processing steps. First, a pre-processing step is often re-
quired to prepare the image for further analysis; for example contrast improvement,
noise reduction, scaling and the removal of artifacts. Subsequently, the regions of
interest have to be detected. For hand radiographs, these are the bones and their
joints. This can be a difficult task when severe joint damage is present. Also,
non-anatomical objects such as rings and labels may cause problems in region of
interest detection. Various image segmentation and edge detection methods can be
used to determine the representation of the pixels. After the objects within the im-
age have been determined, measurements can be done such as JSW measurement,
erosion estimation, classification of bone structure and morphologic assessment.

2.4.1 Detection and segmentation

Within the area of computerized RA assessment few publications describe a fully
automated detection and segmentation method. Most implementations require
operator input such as the identification of landmarks or the selection of regions
of interest (ROI).

Duryea and others are well advanced in developing a fully automated method
for RA assessment. They describe a method for the identification of joint space
and phalanx margin locations of the distal interphalangeal (DIP), PIP and MCP
joints of fingers 2–5 [36]. Their method is specifically designed for analyzing hand
radiographs and is based on a priori knowledge of certain image characteristics.
They report success rates (based on the number of detections within 5 mm from
manual annotation) of 99%–100% on 27 pairs of hand radiographs. However, they
also mention that certain radiographs were excluded from their test set, since
non-anatomical structures, such as rings and labels, where present in important
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parts of the images. In a later publication several improvements have been made
to the previous method; by adding a neural network they succeed in detecting
carpometacarpal, radiocarpal, and the scaphocapitate joints with success rates of
87%–99% for normal hands and 81%–99% for RA hands [47].

Michael et al. have developed a model-based system for the segmentation
of bones [31]. They start with a preprocessing step by applying a model based
histogram correction and use a threshold above the gray level of the background to
find the shape of the hand. Next they use a priori knowledge to determine regions
for the bones of the fingers and the palm. This step requires a standard way of
positioning the hand. The bone contours are found using an adaptive contour-
tracker that incorporates information about the expected shape of the particular
bone. At the time of publication, the described system was under development
and preliminary results were obtained from only a few experiments.

Promising methods in the bone densitometry research area have been investi-
gated by Efford and Thodberg et al., who have used active shape models (ASM)
to detect the contours of the metacarpal bones [48, 49, 50]. Thodberg et al. report
a 99.5% success rate for this method (presumably these results were obtained by
means of visual verification). The ASM methods are based on deformable mod-
els with statistically trained parameters that control possible shape variability.
Thodberg also experimented with active appearance models (AAM), which is a
more robust technique, since this also involves object texture information in the
model [51]. Unfortunately this publication does not report a success rate for this
method. Other research with ASMs has been done by Sotoca et al. who have de-
veloped software for computerized bone mass assessment of the metacarpals [52].

Langs et al. have developed an approach based on Gabor jets and local linear
mapping nets for locating CMC, MCP and DIP joints [42]. They report success
rates between 80% and 97.5% for different joints. This method was tested on a
set of 10 images, whereas 30 images were used for training. Later they expand
their method with an ASM driven snakes algorithm to segment the metacarpal
bones [44]. In this work they note that ASMs are restricted by their training
examples and the linearity of the models, which makes it infeasible to detect severe
pathological changes as caused by RA. To get around these restrictions they use
active contours (snakes) to find local edge structures. Their results are promising
and indicate that this method can be used for quantitative assessment of bone
erosions.

In our group we have developed a segmentation method based on multiple
connected AAMs [93]. We are able to segment the metacarpals and phalanges
in radiographs where the finger positioning variability is large. 50 radiographs
were used for training the models and 30 for testing. For 73% of the images, the
bone contours were found within 0.5 mm, for 93% within 1.3 mm. These results
are inadequate for accurate JSW measurements; however, this method can offer a
good initialization for further processing steps [98].



24 Chapter 2. An overview of automated scoring methods for RA

2.4.2 Joint space width (JSW) measurement

Since hand radiographs are two-dimensional projections of three-dimensional ob-
jects, their contents are dependent of positioning and projection angle. To estimate
a JSW based on such projection images, one has to determine the locations of the
bone edges within the joint. Dacre and others describe the development of a radio-
graphic scoring system for measuring the JSW and joint space area in radiographs
of the knee [53]. They require an operator to outline the joint space area with the
mouse-pointer and subsequently measure the JSW. Positive results were found in
terms of accuracy, speed and reproducibility compared with manual readings.

Allander, Forsgren and others show a similar method for the MCP and PIP
joints [32, 54], but use the Sobel edge detection algorithm to detect edges in the
joint space area [55]. After manual editing of false and irrelevant edges, they use a
distance transform to find a medial axis of distances between the two edges. Using
the distance values on the medial axis, they calculate the mean JSW.

Another method for measuring the JSW of the MCP and PIP joints is described
in the publication of James and others [35]. For this method an operator has to
place three markers to define a radial arc close to the proximal edge of the joint
(lateral view). The proximal joint space margin is found by a local edge detection
method. By scanning the image intensities radial to the arc and aligning the
edge locations of the proximal joint space margin, they obtain a ’straightened out’
density profile from which they calculate the mean JSW.

Sharp and others describe several image processing experiments for measuring
the JSW of the MCP, intercarpal and radiocarpal joints [39]. Also, they present a
method for measuring bone erosion. For the JSW measurements an operator has to
select a region of interest that contains the joint to be measured. Within this region
an edge finding method marks multiple points on the bone edges. As an alternative
an operator can place multiple markers within the joint space region. From these
initial markers a curve fitting algorithm fits a fourth-order polynomial to the edges.
The average and minimum width are found by calculating the shortest distances
for each point along the joint space.

A completely automated system for measuring the JSW is described in a paper
by Duryea et al. [37], which was appended to the segmentation method mentioned
before [36]. This software program uses features from the gradient profile as inputs
for a neural network algorithm and applies multiple iterative correction steps to
define the correct edge. In this work the authors report to have found a robust
method that is in agreement with established scoring methods.

Angwin and others used custom software for measuring the JSW [40]. Objec-
tive was to establish the sensitivity and reliability of PIP and MCP mean joint
space measurements. This method is based on that of James et al. [35] and is
improved by the employment of a Gaussian distribution to uniquely locate key
features in the image; tracking the features to locate continuous joint margins;
and determination of mean JSW based on averaging measurements of JSW at
180 locations equally spaced across the breadth of the joint. The MCP joints
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are located by positioning 3 user-inputs along the metacarpal head. The average
distance is measured along the radius from the midpoint of the metacarpal head,
which is similar to the technique used by Conrozier et al. for measuring the JSW
in hip [56]. The PIP joints are located by selecting a rectangular region of inter-
est. The average distance is measured by sampling parallel lines vertical across
the joint (fingers pointing upward).

In our group, we have developed a margin detection method for the MCP and
PIP joints based on ASMs [98]. With this method the joint margins are detected
as curves defined by 25 equidistant points. Over a breadth of 6 mm we determine
the average JSW by determining the point-line distance between the curves of the
proximal and distal joint margin. We have found that this detection method has
a higher precision considering reproducibility than manual readings.

2.4.3 Bone damage assessment

Browne, Gaydecki and others have focused their efforts on morphology and devel-
oped a method to detect differences in bone contours and density profiles [30, 29].
This system requires user input for segmentation and coarse edge definition. After
these actions, an edge detection algorithm optimizes the bone contours and with
these contours multiple features are extracted: bone area, average gray intensity,
center of gravity, gravity profile, radial density and contour profile.

The computerized method for measuring erosion volumes in MRI images de-
scribed by Bird et al. is based upon area measurements within each slice [45]. The
erosions are outlined manually and finally the volume is estimated by multiplying
the calculated area with the slice thickness. This method is comparable to the
earlier technique used by Buckland-Wright et al., who used a digitizer tablet to
outline erosions [28].

Jensen et al. used the X-posure System (Sectra Pronosco A/S, Vedbk, Den-
mark) for their research [46]. This system uses the previously mentioned segmen-
tation method described by Thodberg to detect the shafts of metacarpals 2–4 [49].
They estimate the bone mineral density (BMD) by measuring the outer and inner
diameter of the cortical bone. With this method, also known as radiogramme-
try [57], the BMD can be determined with a precision of 0.65% [46].

Sotoca et al. determined the bone density of the metacarpals, proximal and
middle phalanges by estimating the bone density by comparing the average bone
intensity to an aluminum reference wedge placed in the image [52]. Their results
show high correlation with different established measurement methods.

2.5 Discussion

Two-dimensional projection images of the three-dimensional joint structures are
often difficult to interpret. Three-dimensional image modalities are likely to offer
more possibilities for measuring erosion volumes and JSW accurately. Despite the
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increased availability and quality of three-dimensional imaging techniques such
as MRI and CT, plain radiographs are still indispensable. This is because of
their superior resolution, the easiness and speed of the acquisition process, and
also their low costs. In a comparative study it was found that there is not yet
a definite advantage of MRI as compared to radiographic imaging in detecting
progression of joint damage [58].

An interesting alternative approach has been demonstrated by Duryea et al.
who applied digital tomosynthesis [38]. By using multiple projection images from
different angles they are able to reconstruct intersecting image planes of the joints.
Especially for detecting erosions this technique could become useful. For JSW
measurements they comment that improvements are small as compared to the use
of projection radiographs.

Looking at the current state of technology, medical practice and methodology,
digitized radiographs are probably favorable for the assessment of joint damage for
the upcoming years. Continuing the development of advanced radiographic anal-
ysis methodss may help to extract more information from such images. To enable
automatic assessment of joint damage, it is required that image segmentation is
performed in a robust and accurate manner. Understanding the characteristics
of the bone shapes and textures is essential for this purpose. Several reported
problems with image segmentation are related to the way how images have been
acquired. Between and even within datasets there is a large variability in param-
eters such as resolution, contrast, positioning, cropping, and presence of foreign
objects.

In the past few years it has been the trend to use a model based approach
using ASM or AAM techniques. A clear advantage of these methods is that they
incorporate a priori information, which makes them robust to disturbances such as
noise and artifacts. A negative side effect of these methods is that they generally
have difficulties with detecting unusual structures such as damaged bones and
joints. Several solutions have been presented to relax these statistical constraints
by combining these methods with other image processing techniques [59, 44].

When segmentation is performed successfully and all bones have been identi-
fied, then regions of interest can be selected for measurements. In case of JSW
measurements, the bone outline may not be sufficient to determine the joint space.
The projection view of the joint space and overlapping bones may result in am-
biguous and even spurious edges. So far, the choice of which edges to select for
measurement and how the JSW is determined has been up to the designer of
the method. For effective future validation and comparison studies, it is recom-
mendable to define the specific characteristics of the relevant margins. The use of
anatomic phantoms may help to identify these properties and can be used to set
up a gold standard.

Joint damage may be detected by looking at small indentations and other ir-
regularities in bone outlines. Deviations in the bone mass could indicate erosions,
osteophytes and calcifications. Also the texture of the bone may reveal such in-
formation. Because of the variability in bone shapes between patients, it is not
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straightforward to determine what is healthy or ’normal’. Comparison with pre-
viously taken radiographs of the same person may help to detect changes. By
overlaying consecutive images taken over a certain period of time small changes
in shape or bone density may be detected. Despite the availability of methods
to detect changes that could indicate erosions, methods to quantify such effects
have not been reported yet. According to several studies erosion volumes can be
measured in three-dimensional modalities, but these methods cannot be applied to
projection images [28, 45]. Manual, successful methods, such as the Larsen score
and the Sharp/van der Heijde score, rely on classification by an expert with a set
of example images. This task is difficult to automate, as the variability in erosion
appearances are large and their interpretation demands a profound knowledge of
hand anatomy and physiology.

Validation of the various methods is essential, to enable practical use of com-
puterized methods in future bone damage assessment. So far many of the presented
methods have been tested on small datasets from a limited number of hospitals.
Because of the lack of a true gold standard, methods have to be validated with
other existing methods (manual or automated). To be able to compare measure-
ment results, it would be useful to develop a standard which defines what should
be measured and how this should be done. On the other hand, it is not yet clear
which measure is most discriminative for RA. To solve these problems, it is neces-
sary that the various research groups combine their efforts by sharing their data,
results and experiences. Currently, serious efforts to such collaboration are made
within the special interest group on measurement of joint space and erosion of
the international network of Outcome Measures in Rheumatology Clinical Trials
(OMERACT; http://www.omeract.org) [60].
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3
Quantifying joint space width

3.1 Introduction

In RA and OA, semi quantitative scores have been used for 50 years to measure
disease progression and to monitor the effectiveness of treatments [61]. Changes
in the thickness of cartilage can be detected in radiographs by measuring the
JSW, i.e. the distance between the opposing bones (Figure 3.1). Obviously, in
reality the joint space is a 3D space between two bone surfaces. Therefore, ideally
the joint space should be measured in 3D using a 3D imaging technique such as
CT or MRI [38, 45, 62]. In practice this is not yet feasible, because of the high
resolution requirements and the high costs of 3D imaging techniques. Also, for
CT the radiation dose is relatively high compared to plain radiography. To depict
the joint space in 2D projection radiographs, ideally the projection angle is chosen
such that the bones do not overlap and the joint’s bone surfaces are visible as
sharp edges: the joint margins. Next, the JSW can be estimated by determining
the distance between these margins. To be able to compare follow-up radiographs,
ideally the positioning of the joint and the projection angle should be the same
each time a measurement is done. For hand radiographs, postero-anterior (PA)
view is most common with the palmar side of the hand positioned flat on the
detector.

In conventional radiography the JSW was estimated visually, which is a time
consuming task. Soon the question arose if these measurements could be done more
accurately and objectively by using an automated method. Several automated
methods aiming to measure JSW of hand joints in millimeters have been developed

29
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Figure 3.1: PA projection of a metacarpal joint with the joint space clearly visible.

with increasing precision [39, 37, 40, 98]. Some have resulted in ‘normal’ JSW
values, which may differ according to age, sex and height [63]. A study with
repeat radiographs by Angwin and others showed that actual physical changes in
JSW of 0.11 mm ( 7%) can be detected for individual MCP and PIP joints [40].
When averaging the measurements across fingers for a single subject the detectable
change improves to 0.05 mm ( 3%). According to the results of several studies
in early RA the JSW in MCP and PIP joints can decrease at a rate of a few
hundredths of a millimeter per year, which provides an indication of the required
precision of these measurements [64, 60].

Projects to automate JSW measurement use manual or automated techniques
to identify joints on radiographs, and apply an algorithm to outline the joint
margins. Next, the JSW is quantified by measuring the minimum or average
distance between the joint margins. All of these steps may contribute to the overall
precision of a measurement system, making it difficult to compare outcomes of
different systems to one another. In this chapter we focus on the final quantification
step and assess whether existing methods differ with respect to the resulting JSW.
To avoid the influence of variation in the preceding steps, we have used a set of
digitized hand radiographs on which the joint margins were delineated manually.

3.2 Previously described methods

Allander, Forsgren and others [32, 54] describe a JSW measurement method based
on the distance transform of a binary image of a joint. With this method a distance
mapping is created where the value of a point represents the distance to the closest
joint space margin. Figure 3.2 illustrates this approach. The local maxima between
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A B C

Figure 3.2: JSW measurement using the distance transform and medial axis. Binary
image A depicts an MCP joint. Image B is the distance transform of A. C shows the
local maxima of B as white pixels representing the medial axis. The dashed lines mark
the measurement region.

the margins form a ridge which is called the medial axis. By calculating the average
of the pixel values of the distance transform at the medial axis, the mean JSW
is determined. The measurement region is limited to the points where the angle
between the medial axis and the shortest path to a joint margin is less than 85
degrees.

James, Angwin and others [35, 40] use a different approach to measure the
metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints. For the
MCP joint, three user-input points along the metacarpal head are used to define
a circular arc as illustrated in Figure 3.3A. The middle point is placed at ap-
proximately the center of the metacarpal head and identifies the midpoint of the
measurement arc. The exact anatomic locations of the other two landmarks are
not defined in the description of this method. The mean JSW is determined by
measuring the JSW along 180 equally spaced radial lines over a range of 1 radian
centered on the midpoint of the measurement arc. The PIP joints are measured
by measuring the JSW vertically along equally spaced parallel lines (Figure 3.3B).

Duryea et al. measure the MCP, PIP and distal interphalangeal (DIP) joint
spaces [37]. First, they rotate the joints such that the joint space is approximately
horizontal in the image. Then the joint is divided into columns, and for each
column the distance between the margins is measured. Subsequently, the JSW
is calculated by averaging these distances. By using the maximum width of the
joint tips and several constants, they define measurement regions for each joint,
as shown in Figure 3.4. The horizontal locations of these regions, as well as the
applied constants, have been determined empirically from a set of training data.

Sharp et al. describe a method for measuring MCP, intercarpal and radiocarpal
joints [39]. First they estimate the shape of the joint space by fitting two fourth
order polynomials to detected margin locations (Figure 3.5). Next, the shortest
JSW is measured for each point on the upper joint margin. From these mea-
surements they calculate the mean width, the minimum width, and several other
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A B

Figure 3.3: Three points, marked by stars, on the proximal margin of the MCP joint
(A) are used to define a circle. Next, the JSW is determined by measuring along radial
lines. For the PIP joints, the JSW is measured vertically along equally spaced parallel
lines.

A B

Wa

aWa
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bWb
Wc

cWc

C

Figure 3.4: The size of a joint space region is determined by the maximum width of
the joint tips (as indicated by the line segments Wa, Wb and Wc) and a multiplication
constant (MCP: a = 0.58, PIP: b = 0.68, DIP: c = 0.74).

figures which provide information about the symmetry of the joint space [39].

3.3 Evaluation of methods

Suppose we have detected the joint space margins correctly, then we wish to quan-
tify the distance between these margins. Since we cannot treat the joint space
margins as two parallel line segments, it is not straightforward to find an unam-
biguous method to measure the distance between them. In this section we evaluate
various methods for JSW quantification.
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P ( )xd

P ( )xp

Figure 3.5: Pd(x) and Pp(x) are fourth order polynomials fitted to both margins. For
each pixel on the distal margin, the shortest distance to the proximal margin is calculated

3.3.1 Joint margin data

For illustrative purposes and to simulate the effects of several methods, we make
use of a data set of joint margins which have been obtained through manual de-
lineation. Forty pairs of hand radiographs of RA patients with variable disease
duration and damage were used. Radiographs were made by conventional radiog-
raphy and scanned at a resolution of 600 dpi. From these radiographs individual
images of all 2nd to 5th MCP and PIP joints were selected. Five MCP and 6 PIP
joints were excluded because of severe damage with indiscernible joint margins,
leaving 315 MCP and 316 PIP joints for analysis. Joint margins were outlined
manually by two trained operators using a software tool developed for this pur-
pose in Matlab. To enable precise measurements for the experiments, piecewise
cubic Hermitian interpolation was used to smooth the outlines [65].

To confirm that sufficient variation in JSW was included in the dataset all
joints were measured using method E which is described in Section 3.3.5. MCP
JSWs vary between 0.17 and 2.7 mm (mean = 1.37 mm, standard deviation (SD)
= 0.38 mm), and PIP JSWs between 0.14 and 1.44 mm (mean = 0.82, SD = 0.23).
Figure 3.6 shows the histograms of the MCP and PIP JSW sizes in the data set.

3.3.2 Number of measurements

For manual joint space measurements it would be most practical to perform a
single distance measurement, for instance to measure the minimum JSW or the
width at a fixed location. A disadvantage of a single measurement is that it may
not reflect the state of the whole joint space, which can result in a poor sensitivity
to change. Figure 3.7 demonstrates this effect. Another disadvantage is that the
precision of a single distance measurement is highly dependent on the precision
of the detection of the joint margins. Small errors in this detection may result in
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Figure 3.6: Histograms of the MCP and PIP JSWs in the evaluation data set (0.25 mm
bin width).

Figure 3.7: Two joints with the same minimum JSW.

large deviations in the measurement results.

By averaging multiple JSW measurements over a wide range of the joint space,
potential margin detection errors are evened out, resulting in a higher precision.
This method does not prevent certain changes from remaining undetectable, as
demonstrated in Figure 3.8. Additional measurements are required to detect such
changes, as for example the minimum JSW or a measure that describes the overall
deviation from the average.

Generally, the precision of a mean JSW measurement increases with the num-
ber of measurements. However, the maximum number of measurements is limited
by the sample resolution of the margins (which is usually limited by the resolution
of the radiograph and the margin detection algorithm). Depending on the applied
measurement method, it can be useful to interpolate between consecutive margin
points.
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Figure 3.8: Two joints with the same average JSW.

3.3.3 JSW region

When measuring a mean JSW, one has to define a region wherein the measure-
ments are done. One method is to define a fixed breadth within which the mean
JSW is determined. This width should be as large as possible, while still fitting
all possible joint shapes and sizes. To compensate for these differences, a variable
width can be used that is based on the size of the joints or the bones, similar to
the method of Duryea et al. [37]. The risk of applying such method is that the
required additional measure may be affected by measurement deviations, detection
errors or changes over time due to bone deformations. Consequently this would
decrease the measurement accuracy.

Also, the location of the joint space region has to be defined. For the MCP
joints the location of the joint space depends on the degree of abduction of the
fingers (PA view). This location moves along with the proximal margin of the
proximal phalanx which articulates over the metacarpal head. As illustrated in
Figure 3.9, the intersection of the proximal phalanx’s midline with the joint space
can be used to define the center. Since the PIP (and DIP) joints are rigid from
a PA perspective, it makes little difference whether the midline of the proximal
phalanx is used or the midline of the middle phalanx. We prefer the midline of
the proximal phalanx, as it is already determined for finding the center of the
MCP joint. Secondly, as the body of this bone is generally longer than that of the
middle phalanx, its midline can be determined more precisely (angular deviations
of the midline are likely to be smaller for longer bones).

3.3.4 Measurement lines

To measure a JSW, an intersecting line can be used to find two points; one on
each margin. The distance between these points is then the JSW. In the following
we explain how the orientation of such measurement line, with respect to the
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Figure 3.9: In case of MCP joint abduction, the midline of the proximal phalanx (right)
has a better correspondence with the center of the joint space than the midline of the
metacarpus (left).

orientation of the joint, is of influence for the measured JSW.

A straightforward method is to measure multiple distances between the margins
along parallel lines. If the direction of these lines is chosen nearly perpendicular to
both margins, this method works well. But, since the margins are generally curved,
and the direction of the parallel lines (with respect to the orientation of the joint)
can change between different measurements, this can result in JSW measurement
deviations. To demonstrate this effect, we have simulated such measurements on
the margins of a typical MCP joint. Figure 3.10 shows the shape of the joint
and the change of the measured JSW profile for angular deviations of plus and
minus one degree. The joint was rotated with the midline of the metacarpus in
the vertical direction. The reference measurement was done along vertical lines.
The graph shows the deviations ∆wα in the measured JSW profile over a breadth
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Figure 3.10: JSW measurements along parallel lines become more sensitive to small
angle deviations at locations where these lines are ’less perpendicular’ to the joint space
margins. The graph shows the change of the JSW profile for angle deviations of −1 ◦ and
+1 ◦.

of 6 mm along the x-axis.

∆wα(x) =
(wα(x)

w0(x)
− 1

)
× 100% (3.1)

For each measurement location a reference measurement was done along a vertical
line (w0) and two measurements under an angle of minus and plus one degree (w−1

and w+1).
If measurements are performed along parallel lines, the direction should be

independent of the positioning of the hand. In case of the MCP joints (PA pro-
jection), it is undesirable that the JSW depends on lateral flexion of the joint. To
partly counter this effect, the measurement lines can be positioned parallel to the
midline of the proximal phalanx (Figure 3.11).

Particularly when measuring the joint space margins of the MCPs over a wider
region, precision may improve when the measurement lines are adjusted to the
curvature of the joint margins. As mentioned in the previous section, James,
Angwin and others [35] use radial lines originating from the center of the circle
fitted to the metacarpal head. The difficulty with this approach is that fitting a
circle to the margin of a metacarpal head can be ambiguous. Figure 3.12 shows
that, depending on the shape of the metacarpal head, there may be different
possibilities leading to different origins for the radial lines used for measurements.

Deviations in the determination of these circle origins may affect the JSW
measurement. To investigate this, we applied this technique on the contour data of
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Figure 3.11: If the measurement lines are chosen parallel to the midline of the proximal
phalanx, then the JSW is less dependent on MCP abduction.

Figure 3.12: Two examples showing that different circles can be fitted to the margin of
a metacarpal head. The centers of the circles are marked by dots.

100 MCP joints. For each sample we applied the method of James [35] to determine
a reference measurement w0 of the JSW. To measure the effect of possible errors,
we also performed several extra measurements w(ρ, βi) by displacing the origin of
the fitted circle by a distance ρ in a random direction βi. Figure 3.13 shows the
mean JSW deviation ∆w(ρ) for N = 100 experiments, with:

∆w(ρ) =
1

N

N∑

i=1

∣∣∣∣
w(ρ, βi)

w0
− 1

∣∣∣∣ × 100% (3.2)

This graph shows that JSW measurements can change with approximately 1.5%
per millimeter shift of the fitted circle. During our experiments, we found that
differently fitted circles can result in different origin locations that up to four
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Figure 3.13: Small deviations can occur with the determination of the center of the
metacarpal head. As a result the measured mean JSW differs along the radial lines. The
graph shows the mean absolute change of the JSW for random displacements of the center
point by a distance ρ.

millimeters apart.

Since both joint margins generally have different curvatures, it is impossible
to measure the JSW perpendicular to both margins over the entire joint space.
Alternatively it is possible to measure the shortest distance between the margins
at multiple locations along either of the margins. With this method the orientation
of the measurement lines are solely dependent on the curvature and location of the
joint space margins and independent of the orientation of the joints in the image.

Sharp and others [39] applied this method by measuring the shortest distances
for locations on the distal margin. When the curvatures of the margins change
gradually, this method works well. The average shortest distance can be measured
from equidistant points on either margin. When the curvatures of the margins vary,
the measurements can be spread with a nonuniform distribution (Figure 3.14). To
correct for this problem, one could apply this method to both margins and average
the results. We have used this approach in a previous study [98].

As previously referred to, Allander, Forsgren and others [32, 54] apply a similar
method using a distance transform. For this method the calculations have to
be made in pixel space on a discrete grid. If the margins are described by line
segments, the medial axis can be found geometrically through triangulation, as
demonstrated in Figure 3.15. Figure 3.16 shows how the shortest distances are
measured from equidistant points on the medial axis.

3.3.5 Comparing methods

Six methods, varying in the abovementioned aspects were applied to all joints (315
MCPs and 316 PIPs) in the dataset:
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A B

Figure 3.14: Measuring shortest distances from equidistant points on the distal margin
(A) or the proximal margin (B). The varying curvatures result in a nonuniform distri-
bution of the measurements.

Figure 3.15: The medial axis can be found by triangulation.

A. Measurements along parallel lines in the direction of the midline of the
proximal phalanx. A similar method is used by Duryea et al.[37] and
Angwin et al. [40].

B. Measurements along radial lines originating from the center of the metacarpal
head (only MCPs), as used by Angwin et al. [40].

C. Shortest distance from the proximal margin.

D. Shortest distance from the distal margin, as used by Sharp et al. [39].

E. Average of methods C and D, as used in our method [98].

F. Shortest distance from the medial axis. Similar to the method presented by
Allander et al. [32].
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Figure 3.16: Shortest distance measurements along the medial axis.

For each method we calculated the average of 100 measurements at equally spaced
locations. The methods described in Section 3.2 use different regions to measure
JSW: some define a percentage of the joint, some are dependent on marks set by
an operator, and others do not specify this aspect. For this study, we chose a
fixed region of 6 mm centered on the midline of the proximal phalanx. We have
found that this size fits for all MCP and PIP joints in the dataset of this and other
studies.

To compare JSW outcomes between methods, we have fitted a straight line to
the results of each pair of methods. Fitting was done by orthogonal regression;
minimizing the sum of the squares of the perpendicular distances (offsets) between
each point and the line. The outcomes of methods Y and X are modeled by:
Y = aX + b. Where a is the slope and b the intercept. As a measure for the
fitting residuals, we determined r, which is the standard deviation (SD) of the
perpendicular offsets. Also, we calculated the mean of all JSW measurements for
each method. MCP and PIP measurements were compared separately.

For the MCP joints, the comparison results between methods A–F are displayed
in Table 3.17 and Figure 3.18. For the MCP joints these are displayed in Table 3.19
and Figure 3.20 (excluding method B, which only applies to MCP joints).
Looking just at the means, there is little difference between methods B–F. The
mean of method A is significantly larger, which is to be expected because the
the measurement lines are not perpendicular to a large part of the joint margins.
Compared to any of the other methods, method A also shows the largest differences
in terms of slope a and intercept b. The SDs of the residuals r are the highest
for comparisons with method B. The outcomes of methods C–F are almost the
same for the MCP joints. For the PIP measurements the difference between these
methods is also small, but slightly higher than for the MCP joints. The reason is
that PIP joints generally have a narrower JSW and more irregular margins than
MCP joint spaces. This results in larger differences between the shortest distance
measures, as illustrated in Figure 3.14.
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Figure 3.17: Results comparison of JSW measurements (in millimeters) performed on
315 MCP joints using methods A–F. Orthogonal regression was used to determine the
relation between the outcomes of method Y (row labels) and X (column labels): Y =
aX + b. The value indicated by r, is the SD of the perpendicular offsets. The bottom row
shows the means of all measurements.

3.3.6 Other measurements

As noted before, it is possible that changes occur without affecting the average
JSW. To detect such changes, one can build a JSW profile of each joint using one
of the aforementioned methods. Next, many additional measures can be based on
the change in the profile of the joint margins; e.g. the variance with respect to the
mean JSW, a measure of symmetry of the joint space or the mean absolute differ-
ence between follow-up radiographs. When performing cross-validation between
different margin detection methods by comparing JSW values, it is important
that the same measurement method is used. Instead of comparing such calculated
measures, it may be more practical to directly compare the JSW profiles.

3.4 Discussion

Measuring JSW using semi quantitative methods has proved successful in a large
number of studies [61]. Since this requires at least two independent human ob-
servers and is time-consuming, various efforts have been undertaken to automate
JSW measurement. A number of studies have presented reproducible results, ex-
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Figure 3.18: Selection of scatter plots with regression lines comparing the MCP JSW
outcomes of 4 different method pairs. The slopes and intercepts of the regression lines
are indicated by a and b, the SDs of the perpendicular offsets by r. Table 3.17 shows the
results for other method pairs.

pressing JSW in millimeters. However, the methods used were different, and con-
sensus regarding the precise way to measure JSW is lacking. Comparison of meth-
ods using the same radiographs demonstrated relevant differences in JSW [60]. In
the present study we compare the proposed quantification methods, and demon-
strate experiments to detect which elements lead to relevant differences. In partic-
ular, we have investigated the effects of measurement direction, region of the joint
to consider, and the number of measurements to be performed on a single joint.
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Figure 3.19: Results comparison of JSW measurements (in millimeters) performed on
316 PIP joints using methods A–F. Orthogonal regression was used to determine the
relation between the outcomes of method Y (row labels) and X (column labels): Y =
aX + b. The value indicated by r, is the SD of the perpendicular offsets. The bottom row
shows the means of all measurements.
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Figure 3.20: Two scatter plots (with regression lines) comparing the PIP JSW outcomes
of two different method pairs. The slopes and intercepts of the regression lines are indi-
cated by a and b, the SDs of the perpendicular offsets by r. Table 3.19 shows the results
for other method pairs.
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First, in a joint the region to be measured needs to be chosen. Most studies
define a fixed breadth within which the average JSW is determined. Of course,
a larger sample region provides a more precise average, but it should also be
small enough to fit all possible joint shapes and sizes. Duryea et al. propose a
variable breadth based on the size of the joints or the bones [37]. This carries the
risk of decreasing accuracy due to detection errors or changes over time by bone
deformation or osteophytes (protrusions on bones). Therefore, a region with an
absolute width based on consensus is preferable.

In MCP joints ulnar deviation rotates the proximal phalanx around the
metacarpal head, causing an extra definition problem for the region to be mea-
sured. Angwin tries to overcome this by measuring along radial lines from the
center of the metacarpal head [40]. However, this requires manual positioning of
marks on the metacarpal head, which may be prone to variation. As demonstrated
in our experiment, small variations in the position of the assumed center of the
metacarpal head may lead to relevant changes in the resulting JSW. Alternatively,
as illustrated in Figure 3.9, the intersection of the proximal phalanx’s midline with
the joint space can be used to define the center of the region to measure. Since
the PIP (and DIP) joints are rigid from a PA perspective, it makes little difference
whether the midline of the proximal phalanx is used or the midline of the middle
phalanx. From a practical point of view the midline of the proximal phalanx is
preferable, as it can also be used for finding the center of the MCP joint. Secondly,
as the body of this bone is generally longer than that of the middle phalanx, its
midline can be determined more precisely.

Once the region to be measured is defined, the distance between the joint mar-
gins can be determined in many ways. It would be most practical to perform a
single distance measurement, for instance to measure the minimum JSW or the
width at a fixed location. But joint space narrowing is often asymmetrical and
the precision of a single distance measurement is highly dependent on the pre-
cision of the detection of the joint margins. Moreover, from our experiment on
the effects of the direction of measurement it is obvious that even small variations
in measurement direction have relevant effects on JSW. Therefore, it is manda-
tory to measure the JSW multiple times over the joint space. What should we
report: the minimum or the average of these multiple measurements of JSW in
the region defined in the previous steps? Obviously the minimum is based on just
a single measurement and can be misleading. The average of a large number of
measurements is thus more attractive, and has been implemented in most previ-
ously described methods. The precision will be limited by the resolution of the
radiograph and the quality of the margin detection algorithm.

The 4 methods described in Section 3.2 use different approaches to perform
multiple measurements. In this study we have applied these methods to joints
with predefined joint margins, thus excluding other factors that can affect the
resulting JSW. We have found that a single method (A) stands out by slightly
higher values. This means that data obtained by this method cannot be directly
compared with methods C-F, which appeared to be more in line with each other.
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Distances between margins can be measured as the average of the shortest
distances from multiple equally spaced locations on either of the margins (method
C or D). The precision can be further increased, when the shortest distance is
measured from both margins (method E). Corresponding results can be obtained
using the medial axis (method F), but this is more complex to implement due to
additional geometrical computations. We therefore recommend using method E.
By determining the mean JSW not all changes in the joint space can be described.
Additional measures can be based on changes in the JSW profile (the succession of
local measurements) of the whole joint space region, e.g. the change in variance or
minimum. In this study we have not looked at the sensitivity to detect changes in
JSW over time. Therefore, we cannot exclude that a single method would perform
better than the other in this respect. However, the low residual values and almost
identical means of methods C–E make it unlikely that they will have uneven test
characteristics. Although methods A and B could have better characteristics,
they are more prone to error by small variations in hand position on radiographs
or manual positioning of markers to define the region to be measured.

3.5 Conclusion and recommendation

To measure JSW in MCP and PIP joints, uniformity in methodology is desirable.
The axis of the first proximal phalanx provides the easiest landmark to start
automated analysis. The region to measure JSW can be defined by the crossing of
this axis with the proximal (MCP) and distal (PIP) margin of this bone. Using a
fixed size for the measurement region will be most robust when comparing follow-
up images. In the dataset of this and other studies, we found that a region of 6 mm
wide fits for all MCP and PIP joints. To measure the actual distance between the
joint margins, the method using the average of the shortest distances measured
from both the distal and the proximal margins provides the most precise results.
Consensus among researchers in this field will lead to exchangeable data regarding
JSW in millimeters. This may be of help in future epidemiological research and
in the comparison of outcomes of interventional trials in RA or OA.



4
Segmentation of bones in hand

radiographs

4.1 Introduction

To enable automated assessment of hand radiographs, one needs to find a way
to detect and identify regions of interest: i.e. joints and bones. As discussed in
Section 2.4.1, thus far there are few systems that have realized this in a successful
way.

One of the problems with image processing on hand x-rays is that there is a high
variability in image quality. This has several causes. Some are related to the type of
the x-ray system that is used, e.g. film in combination with phosphorescent plates,
computed radiography, or indirect flat panel detectors. Except for differences in
resolution or sensitivity of these systems, the exposure settings are generally not
standardized, and therefore may differ. In case of film radiographs an additional
digitization step is needed, the quality of this conversion dependents on the type
of image scanner or camera that is used. To be robust to this variability, an
image processing algorithm needs to be robust to differences in resolution, noise,
sharpness, contrast and brightness.

Depending on the type of imaging system used, there are commonly different
types of non-anatomical objects in the radiographs, such as name tags, left/right
labels, and digital imprints. Also, near the edges of the radiographs, the frame of
the diaphragm is often visible. In case of film radiographs, stickers, written text
and cutouts may appear at various locations in the image. Other objects that
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Figure 4.1: Example set of hand radiographs of varying quality, positioning and with
various non-anatomical objects present.

are commonly present in radiographs are rings, bracelets, and implants. Figure
4.1 shows several example radiographs that are common in practice. Other image
processing challenges are caused by the lack of a standard protocol on how a hand
is to be positioned. Though the hand is usually placed flat on the detector, there
are still several degrees of freedom in which the hand can be positioned: finger
abduction/adduction, thumb flexion/extension, and wrist abduction/adduction.
Furthermore, the overall orientation of the hand may be different, and sometimes
a radiograph is made of both hands at the same time.

Besides the aforementioned sources of image variability there is also the hand’s
anatomical variation that has to be taken into account. This variation is particu-
larly large for patients with bone degenerative diseases who may have deformities
due to severely damaged bones and joints.

For future research, it would be convenient to use a fixed acquisition protocol,
such that radiographs become more standardized. Further on, in Section 7.5, we
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Figure 4.2: The left radiograph shows a healthy joint with the JSW clearly visible. The
right shows a joint with severe joint damage.

present a positioning aid that can be used for this purpose. But with the current
and past material, we must deal with a large diversity in radiographs.

To tackle the aforementioned problems, we have designed a segmentation algo-
rithm that is based on an iterative search method using active appearance models
(AAM) of the hand bones. An AAM is a deformable model of a certain image
object that includes information about its shape and texture [66]. The modes of
variation in an AAMs are commonly configured by using a set of annotated train-
ing examples that reflect the variability of objects to be modeled. By tuning the
model’s parameters, it is possible to control the appearance (shape and texture)
of the model. To find a similar object in a new image, one has to control these
parameters such that the AAM matches to the searched object.

With a properly configured model, only plausible appearances of the modeled
object can be generated. Obviously this makes it difficult to obtain a good match
with anomalous instances, which are likely in the case of hand radiographs of pa-
tients with RA. For instance, due to severe joint damage, the JSW can completely
disappear, resulting in two bones being fused together Figure 4.2 shows an exam-
ple of such severe damage. Despite that in such cases an exact fit of the model
may be impossible, a partial fit can be adequate to estimate regions of interest
such as the joint locations. This ability makes an AAM search robust compared
to local image processing techniques. Other research with AAMs on parts of hand
radiographs has been described in [67, 51] (see also Section 2.4.1).

4.2 Active appearance model (AAM) of the hand

The construction of an AAM of the hand begins with collecting a training set
of hand radiographs that have been provided with suitable landmarks (Subsec-
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tions 4.2.1 and 4.2.2). As the goal is to detect bone outlines, landmark locations
are carefully chosen near the edges of the bone contours. With the training set
of landmarks it is possible to describe the variability of the bone shapes using
a linear model (Subsections 4.2.3, 4.2.4 and 4.2.5). Texture descriptions of the
training examples can be obtained by sampling intensity values within the regions
of the bones. Subsequently these textures are modeled and combined with the
shape model into an AAM (Subsections 4.2.6 and 4.2.7).

As pointed out in the previous section, an important part of the variability
in hand radiographs is caused by differences in hand and finger positioning. To
separate the positioning variability from the anatomical variability, we make use of
multiple connected AAMs [68, 69]. Each bone, except for the carpals, is modeled
in a separate AAM and then combined in a single model of the hand. The carpal
bones are also included in the hand model, but they are joined together in a
single AAM (Subsection 4.2.8). To reduce calculation efforts in determining these
general hand features, we begin the AAM search with a simplified, low-detail
model. After several iterations, we switch to a high-detail model to find the bone
edges (Subsection 4.2.9). Our AAM search method itself requires relatively little
computation effort, as the relation between search error and model parameters are
determined in advance (Subsection 4.2.10).

The main part of the AAM search algorithm has been implemented in Matlab.
Due to memory and performance limitations, several functions were optimized
using C++ code. We developed and tested the programs on a computer with a
2 GHz Intel Pentium IV processor and 2 GB of memory.

4.2.1 Dataset

We have gathered a set of 100 single hand radiographs (posteroanterior view) of
patients diagnosed with RA. Both left and right hand images were present in the
set, but left hand images were mirrored such that the same method could be used
on both hands. For each patient in the set there were at least two radiographs
available (both hands), for several patients there were multiple radiographs avail-
able from different time points.

The images used in this study are digital scans from film radiographs. The
scanning resolution is 600 dpi (in both directions) with 16-bit gray values (effec-
tively 12-bit), and images were stored in lossless image formats.

The dataset has been split into a set of 50 radiographs for training and a set
of 50 for testing. This has been done such that the radiographs of each particular
patient are only present in either the training or the test set.

4.2.2 Landmarks

To record landmarks in the image data set, we have developed a custom MS Win-
dows C++ application. This application allows an operator to accurately place
landmarks by using several magnification and contrast enhancement tools. The
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Figure 4.3: A ’fish bone’ shaped grid and the manually outlined contour define the
landmark locations.

metacarpals, proximal and middle phalanges have been outlined manually in each
radiograph. To define landmarks on each bone contour, we place a ’fish bone’
shaped grid by selecting the proximal and distal bone ends. The intersections of
the grid with the (manually outlined) contour then define the landmarks as de-
picted in Figure 4.3. The radiating grid lines originate at 15% of the bone length
from both ends. For each bone the same grid is used, consisting of 64 intersecting
gridlines.

Since the distal phalanges are considered to be less important for joint damage
assessment in RA, we mark them with only four landmarks. Finally, 10 landmarks
indicate the carpal region. The landmark locations are displayed in Figure 4.4 and
4.5. It took between 20 and 30 minutes to provide a single hand radiograph with
all described landmarks.

4.2.3 Shape vector

We define the term ‘shape’ as a set of L landmark points (xj , yj). To enable
statistical analysis on these points, we store the x and y-coordinates in a 2L
element shape vector (x1, x2, . . . , xL, y1, y2, . . . , yL)T. The shape vector’s unit is
defined in millimeters instead of pixels, such that the shapes are independent of
the resolution of the images.
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Figure 4.4: Landmark locations of wrist and distal phalanx.

4.2.4 Overall alignment

To make the AAM of the hand invariant to pose variations (translation, scaling
and rotation), we align the training examples to one another using partial Pro-
crustes analysis [70]. For this overall alignment we make use of the landmarks of
metacarpals 2–5, since this group of bones form a rigid block independent of finger
positioning.

Firstly, we translate all shapes to the origin by subtracting the centers of the
‘metacarpal blocks’ (MBs). The center (x̄, ȳ) of a MB is calculated from its K
landmarks by

x̄ =
1

K

K∑

j=1

xj , ȳ =
1

K

K∑

j=1

yj . (4.1)

A centered shape vector is then defined by

xc = (x1 − x̄, x2 − x̄, . . . , xL − x̄, y1 − ȳ, y2 − ȳ, . . . , yL − ȳ)T. (4.2)

Secondly, we determine a measure for the scale s of each MB by calculating
the root of the sum of square elements of xc:

s =
√

xT
c xc. (4.3)

Subsequently we rescale all shapes to the mean scale s̄ of the training set and
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Figure 4.5: Locations of all landmarks in a training example.
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obtain

xs =
s̄xc

s
. (4.4)

To remove the rotational component, we select one of the MB shapes xs0 and
rotate all other shapes xsi so that the sum of distances Di(θ) between points is
minimized:

Di(θ) = ‖xs0 − xsiA(θ)‖, (4.5)

where A(θ) is a rotation matrix corresponding to angle θ. Finally, we rotate all
shapes to the mean angle θ̄ of the training set and obtain the aligned set of shapes
defined by

xi = xsiA(θi − θ̄). (4.6)

4.2.5 Modeling shape

Shape variation can be expressed in a statistical manner by determining the mean
x̄ and eigenvectors φi of the shape vectors in the training set.

x̄ =
1

N

N∑

i=1

xi, and (4.7)

Φ = [φ1 φ2 . . . φt] (4.8)

where N is the number of examples in the training set. To reduce the number of
parameters that control the shape model, we apply principal component analysis
(PCA) [71], and construct matrix Φ from t eigenvectors corresponding to the
largest eigenvalues. The shapes of the training set can now be approximated by

x ≈ x̄ + Φb, with (4.9)

Φ = [φ1 φ2 . . . φt], and (4.10)

b = ΦT(x − x̄). (4.11)

The right side of equation 4.9 can be used to generate new synthetic shapes by
choosing new values for the parameter vector b. To make sure that only plausible
shapes are generated, we set the following condition to these parameters:

|bi| ≤ 3
√

λi, (4.12)

where λi is the eigenvalue of the corresponding eigenvector φi.
Figure 4.6 shows the first five modes of variation (controlled by parameters

b1–b5) of the shape model of the third metacarpal bone. For this example the pose
(translation, scaling and rotation) variation was removed by aligning the proximal
and distal ends of the training examples.
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Figure 4.6: Shape model of metacarpal 3, showing the first five modes of variation (from
left to right in increasing order). Black line: mean, gray line: +3 SD, dotted gray line:
-3 SD

4.2.6 Modeling texture

By the term ’texture’, we refer to a set of intensity values that we sample from
an image object using a fixed pattern. To create a model of an object’s texture
independent of its shape, we first warp each image from the training set to the
mean of our shape model. For a single object, such as a metacarpal bone, this
can be done directly by thin-plate spline warping [72], using the landmarks as
source and the mean shape as target points (Figure 4.7). For partially overlapping
objects this method cannot be used, because discontinuities would occur in the
warped image. As bones in hand radiographs often overlap near the joints, each
bone has to be warped separately.

With all image data warped to the mean shape, we define a shape-independent
texture patch from which gray intensities can be sampled. As we are interested in
finding the contours of the bones, we do not only sample gray values within the
bone contours, but also in the near region outside of them. For this purpose we fit
a bounding box to each bone contour with an additional spacing of 3 mm. Next,
we define an equally spaced grid of M sample points to create a texture vector of
intensity values

g′ = (g1, g2, . . . , gM )T. (4.13)

Before sampling texture values, one has to apply an appropriate low-pass filter to
avoid aliasing artifacts [73]. To compensate for differences in image contrast and
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A B
Figure 4.7: Example showing how the bone texture from a training example (image
A) is warped to the mean shape in image B. The deformation mesh is calculated using
thin-plate splines [72].
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brightness we calculate the normalized texture vector by

g =
1

σg
(g′ − µg), with (4.14)

µg =
1

N

N∑

i=1

gi, and (4.15)

σg =

√√√√ 1

N − 1

N∑

i=1

(gi − µg)2. (4.16)

In the same manner as for the shape vectors, the texture variation can be
expressed in a statistical manner by determining the mean ḡ and eigenvectors ψi

of the training data. Also for the texture model we apply PCA to create matrix Ψ

from z eigenvectors corresponding to the largest eigenvalues. An approximation
of the textures in the training set is then given by

g ≈ ḡ + Ψd, with (4.17)

Ψ = [ψ1 ψ2 . . . ψz], and (4.18)

d = ΨT(g − ḡ). (4.19)

The right hand side of equation 4.17 represents the statistical description of the
texture in the training set. Parameter vector d controls the modes of variation,
and is bound to the following condition:

|di| ≤ 3
√

κi, (4.20)

where κi is the eigenvalue of the corresponding eigenvector ψi.
To illustrate the properties of a texture model, Figure 4.8 shows the first four

modes of variation of the texture model of the third metacarpal bone. Note that
the bone’s shape is the same in all panels. In this example the texture’s sampling
resolution is 3 pixels per milimeter.

4.2.7 Combining shape and texture

To combine shape and texture information into a single model, we concatenate
shape and texture vectors b and d (Equations 4.11 and 4.19). As shape and
texture are based on different quantities, we correct the shape parameters by
weighing factor z based on the total of variances in the training set.

f =

(
zb
d

)
(4.21)

z =
var(d)

var(b)
(4.22)
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Figure 4.8: The first four modes of variation of the texture model. Each panel displays
three instances: -3 SD, 0 SD, and +3 SD parameter change (from left to right).
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As correlation may be present between shape and texture parameters, PCA is
used on the vectors f from the training set to reduce the number of variations in
the model to the first k (principal) components. The result is matrix Q with k
eigenvectors qi, and since the means of b and d are zero over the training set, f

can be approximated by:
f ≈ Qc, (4.23)

with parameter vector c to control both shape and texture parameters.
Combining the previous equations with Equations 4.9 and 4.17, we obtain the

following expression for the appearance model:

(
x̃

g̃

)
=

(
x̄

ḡ

)
+

(
1
wΦ 0
0 Ψ

)
Qc. (4.24)

4.2.8 Connected submodels

When making a shape model of the complete hand using the aforementioned
dataset, the variability due to positioning differences dominates over anatomical
variability. A second problem due to positioning differences is that non-linearities
occur when a single (x, y)-coordinate frame is used. For instance, when the bones
of the thumb and the little finger are combined in a single linear model, angular
differences between the thumb and little finger commonly range between 0 and
90 degrees. In combination with translation and scaling components, this results
in a non-linear connection between the shape (and position) descriptions of both
fingers. Clearly, such connections cannot be accurately approximated in a single
linear model, especially when few training examples are available. To solve this
problem, we separate anatomical and positioning variability by dividing the hand
model into submodels.

For posteroanterior (PA) projection of the hand we consider seven joints that
can introduce lateral positioning variability: CMC 1, MCP 1–5, and DIP 1. To
eliminate the variability caused by finger positioning, we subdivide the hand model
at these joint locations. This results in eight different submodels:

- A base model of the carpal bones and metacarpals 2–5.

- Four submodels of phalanges 2-5 connected to the base model.

- A submodel of the first metacarpal connected to the base model.

- A submodel of the first proximal phalanx connected to the submodel of the
first metacarpal.

- A submodel of the first distal phalanx connected to the submodel of the first
proximal phalanx.

By aligning the shape examples of the training set to one another in a new sub-
coordinate frame, each submodel becomes invariant to positioning (translation and
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rotation) variability. The orientation of each sub-coordinate frame in the overall
model is determined by the location and angle of the relevant joint in its parent’s
coordinate frame. Figure 4.9 displays the connected submodels in a wire frame
model, and the structure of the coordinate frames. The metacarpals and the bones
of the phalanges are represented by single wires which run from the proximal ends
to the distal ends of the bones.

In Figure 4.10 we demonstrate the effect of the described operations on the
shape variability of the training set. The left pane shows the wire frame models
from the training set after overall alignment, without correcting for positioning
variability. The right shows the same data set, but after aligning the landmarks
in the sub-coordinate frames. Each submodel has been aligned by its proximal
end to remove the translation component. The rotational component is removed
by aligning the angles of the bone axes (of the proximal bone in case of phalanges
2–5).

4.2.9 Multi-model search strategy

With the design of an AAM and the accompanying search strategy, one has to
consider the desired accuracy and the available computing power. By increasing
the number of landmarks for the shape model and choosing a high resolution for
the texture model, the AAM’s accuracy can be improved. As a consequence, this
will result in an increase of the number of model parameters, setting an extra

1.1

1.2
1.3

1.4

1.5

1.1.1

1.1.1.1

1

Figure 4.9: Wire frame model of the hand with connected submodels. The dots mark
the joints that enable lateral displacement of the fingers. Seven dependent sub-coordinate
frames (1.1-5, 1.1.1, 1.1.1.1) are used to make the model invariant to changes in finger
positioning.
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demand on the required calculation efforts.

Using pose invariant connected submodels, as described in the previous sec-
tion, makes the model more accurate with regard to anatomical variations. A
drawback of such approach is that the overall hand model becomes more complex
and requires more calculations: To reconstruct the complete hand model, we need
to add three parameters for each dependent submodel; two for translation and one
for rotation. As we define 7 dependent submodels, 21 extra parameters have to be
introduced for controlling the model.

On the other hand, increasing an AAM’s accuracy does not necessarily mean
that robustness of the AAM search algorithm improves. The more parameters are
introduced to control the model, the more difficult it becomes to design a robust
search strategy. This robustness is determined by how well the search method
converges to global optima (in contrast to local optima), and how well the AAM
must be initialized.

Taking into account these considerations, we choose a search strategy based
on the succession of two different AAMs. The first is a low-detail AAM controlled
by a small set of parameters, which makes it fast and robust during the search.
The result of this first search is used to initialize a second, high-detail AAM. The
second AAM is slower, as it is controlled by more parameters to enable an accurate
match of the model. In this way we combine the robustness and speed of the first
AAM with the higher accuracy of the second.

Figure 4.10: Wire frame representation of training set before (left) and after (right)
aligning the submodels in the sub-coordinate frames.
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Low-detail model

The low-detail model consists of a single, overall shape model of the hand. The
landmarks used for this model are defined by the four corners of each bone’s
bounding box. The carpal region is defined by a single bounding box, which
makes that the shape model consists of 20 × 4 = 80 points (19 bones + carpal
region). To make the model invariant to pose variations, we applied the alignment
procedure as described in Section 4.2.4. For the texture model, the resolution is
set to 8 pixels per centimeter. After applying PCA on the data of the training set
the AAM could be reduced to 30 parameter variations covering 89% of the total
variance displayed in the training set. The overal pose is controlled by four extra
parameters for translation (×2), scaling and rotation.

Figure 4.11 shows the first three modes of variation of the low-detail model. At
the locations where textures overlap the average gray intensity values are displayed.

High-detail model

The high-detail model has its focus on anatomical variability and consists of all
920 landmarks that are available in the training set (Section 4.2.2). The AAM
is made positioning invariant by aligning the overall data and using connected
submodels, as explained in Section 4.2.4 and 4.2.8 respectively. The resolution of
the texture model is set to 16 pixels per centimeter. After applying PCA, the AAM
was reduced to 25 modes of variation covering 85% of the variance in the training
set. Note that in contrast to the low-detail model, this model contains mainly
anatomical variation, as positioning variability has been removed. To reestablish
positioning variation, 21 parameters are added to control translation and rotation
of 7 dependent submodels. Four additional parameters control the overall pose of
the AAM.

Conversion between models

To initialize the second AAM search with the results of the first, it is necessary to
find a conversion method between the parameters of both models. If both models
have been created using the same training examples, a linear relationship can be
deduced from the optimal model parameters.

Let matrices U and V be two sets of N parameter vectors of two different
AAMs but corresponding the same training data. As the parameter means of the
training data are zero, we can estimate the cross-covariance matrix Σvu by:

Σvu ≈ VUT

N − 1
. (4.25)

Obviously, this estimate becomes better when more training examples are avail-
able. With the help of the cross-covariance matrix we can estimate parameter
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Mode 1

Mode 2

Mode 3

-2 SD Mean +2 SD

Figure 4.11: Synthetic images created with the low-detail model for the three largest
modes of variation (rows). To demonstrate the effect of each mode, the corresponding
parameter is changed with ±2 standard deviations from the mean (columns).
(Remark: some minor visible image distortions are unrelated to the model, but were
caused by the applied image rendering method.)
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vector v based on u by

v ≈ Σvuu. (4.26)

Since both models are different linear approximations, we can expect differences
between the models’ appearance with regard to shape and texture. Furthermore,
the parameter reductions that have been carried out by means of PCA may result
in poorly correlated features between models. Evidently it is impossible to estimate
features of the second model if these are not correlated with any features of the
first. In these cases the cross-covariance is close to zero and consequently the
corresponding features will be initialized by their mean.

4.2.10 AAM search

Different methods can be used for the implementation of the AAM search algo-
rithm. Our method is based on the example described in [66]. The goal of an
AAM search is to minimize the difference between the model’s gray-level appear-
ance and the targeted object in the actual image by tuning the model parameters
p. The difference r(p) is found by generating an instance of the model, and then
comparing the model’s texture levels gmodel with the corresponding pixel values
gimage in the real image:

r(p) = gimage − gmodel. (4.27)

Furthermore, we define the minimization criterion by calculating the sum of square
differences

e2(p) = r(p)
T
r(p). (4.28)

To simplify our calculations, we make use of the first order Taylor expansion
of Equation 4.27, which is given by

r(p + δp) = r(p) +
∂r(p)

∂p
δp. (4.29)

Next, to find a solution for δp that minimizes the squared difference e2, we need
to minimize |r(p + δp)|2. This is done by equating Equation 4.29 to zero, which
results in the following solution:

δp = −Rr(p), with (4.30)

R =
(∂r(p)

∂p

T ∂r(p)

∂p

)
−1 ∂r(p)

∂p

T

. (4.31)

Note that according to the previous solution, one needs to know matrix R

for all possible parameter instances p. In general, this is computationally too
demanding to determine during search, therefore we estimate R beforehand, by
assuming that it is approximately the same for all instances. To find an estimate
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for R, we determine the average of ∂r(p)
∂p

for the examples of the training set:

dr(p)i

dpj
=

∑

k

ζ(ǫjk)(ri(p + ǫjk) − ri(p)), with (4.32)

ζ(ǫjk) ∝ exp(−ǫjk/2σj
2)

ǫjk
, (4.33)

where ζ(x) is a Gaussian weighing function, ri an element from the difference
vector (Equation 4.27), σ2

j the variance of the pertinent parameter pj , and k the
number of parameter deviations tested. The parameter changes ǫjk used for our
experiments are ±0.2σj, ±0.5σj and ±0.7σj.

The linearity assumption works best for small parameter differences. For larger
differences the estimate of δp will be poor. Therefore, during the search it is
necessary to use several iterations to converge to a (local) solution. As there is
a risk of repeatedly overestimating δp, which would result in poor convergence
(due to oscillation), we multiply δp with a scalar attenuation coefficient. Initially
this coefficient is set to one, but as the overall difference e (Equation 4.28) does
not decrease between successive iterations, this coefficient is decreased by 30%.
The iterative process is stopped when there has not been a decrease of e for three
following iterations with decreasing step size.

We initialize the first AAM search with the low-detail model by setting the
shape and texture parameters to their mean (zero). The model’s pose parameters
for rotation and scaling are also set to their mean, which are calculated from the
training set. The overall translation parameters are calculated by aligning the
centers of gravity of the model to that of the image. For this computation, a 3 cm
margin is omitted in the test image to compensate for possible artifacts, such as
name tags in the image.

4.3 Results

Experiments were performed on the dataset of 100 radiographs described in Sec-
tion 4.2.1. This dataset was split in a training set of 50 images for the AAMs and
a test set of 50 images for testing.

Firstly, we performed experiments with the succession of the low-detail and
high-detail AAMs. The first search step with the low-detail model detected all
bones correctly in 38 images of the test set. A result was considered correct,
when each bone had been enclosed in the corresponding bounding box of the low-
detail AAM. This was determined by using the available contour landmarks of the
dataset (Section 4.2.2). On average, convergence was reached within 8 iterations,
taking about 0.3 seconds per iteration in our development environment. Eight
images showed small failures with the detection of the phalanges; the detected
locations were off by less than 0.5 cm. In the other four images larger search
failures were caused by poor initialization; the initial model had started too far off
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Figure 4.12: Cumulative histograms of the mean error for three different AAM search
methods. Method A: low-detail AAM followed by high-detail AAM using pose invariant
submodels. Method B: High-detail AAM using pose invariant submodels. Method C: Same
as Method A, but without pose invariant submodels.

from the center of the hand and therefore did not find the fingers correctly. After
reaching convergence, the search algorithm continued with the high-detail model.
As mentioned earlier in Section 4.2.9, occasionally small segmentation differences
were visible just after the model transition. In most cases this became corrected
after one or two further iterations.

The second search step with the high-detail model converged within 7 iterations
on average, taking 2.5 seconds for each iteration. The 38 images that were cor-
rectly segmented in the first search also succeeded in the second. Also, five of the
images that initially showed small failures were segmented successfully in the sec-
ond search. For these 43 images, 70% of the landmarks were found within 1.3 mm
distance from manual segmentation. In Figure 4.12 the results are displayed by
the curve marked as method A. This graph shows the cumulative histogram of
the mean error of the landmarks with respect to the manual outlining of the bone
contours. Figure 4.13 shows the results of one of the experiments after several
iterations during the two search levels. Several gross errors occured when one or
more fingers of the model converged to the wrong location, Figure 4.14 shows two
examples.

Secondly, we also tested two alternative AAM search configurations to deter-
mine the effects of the multi-level search strategy and the pose invariant submodels.
In the first alternative, method B, we used the described high-detail model without
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t = 0 t = 1 t = 2 t = 3 t = 4

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 4.13: Example of a successful AAM search initialized with the low-detail model
(upper series in white) and followed by the high-detail model (lower series in black) after
t iterations. The landmarks of the submodels have been connected and are depicted as
contours. The models’ textures have not been displayed in these images.

the initialization by the low-detail model. The segmentation results were similar
as with method A, as is shown in Figure 4.12. In two cases additional errors
occurred in the detection of one or two of the fingers. As we did not make any
changes to the high-detail model, this may indicate that the preceding low-detail
model leads to a better initialization (on visual inspection of the iterative process,
this seemed to be the case for these images). Furthermore, the execution time
increased: on average it took 16 iterations before convergence was reached at an
average 2.5 seconds for each iteration. Overall, the single AAM search method is
about two times slower than the multi-level method.

In the second alternative, method C, we modified method A by leaving out the
alignment step for the submodels the high-detail model. This makes the model
variant for pose variabilities. This configuration performed worse than the other
methods. Figure 4.12 shows the results of these tests. There was no noticeable
change in execution time compared to method A.
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Figure 4.14: Two examples of errors that occurred during the experiments. In the left
the AAM cannot converge correctly, as three fingers have converged to the wrong locations.
In the right pane the little finger is ‘stuck’ onto the ring finger.

4.4 Discussion and conclusion

The results of our experiments show that in most cases the AAM search method is
able to find the specified landmarks within a few pixels from manual segmentation
by a trained person. The maximum texture resolution of 16 pixels per centimeter
in the second search step sets a limit to the accuracy of the results. Increasing the
resolution will improve accuracy, but will also demand extra processing efforts.

Using two search levels of increasing model quality showed to be effective in
reducing the calculation time. The search with the combination of the two models
performs about twice as fast as the one with the single high-detail model without
negatively affecting the results. In a few cases results improved, seemingly due to
a better initialization of the high-detail AAM. As both models are different linear
approximations, switching between the two models sometimes results in minor
deviations between their appearances. Usually this deviation is corrected within
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one or two iterations.
To compensate for large variabilities caused by differences in finger positioning,

we made several submodels of the fingers invariant to rotation and translation.
Our results show that this improves detection without affecting the algorithm’s
execution time.

Some small segmentation failures may be caused by a too poorly trained model
and a limited number of permitted variations. This may be improved by increasing
the size of the training set. On the other hand, since we are trying to segment
hands affected by RA, it can be expected that rare appearances occur. Although
the training set consists of RA hands, it is (even with a larger data set) unlikely
that all possible variability can be incorporated in the model.

Some other failures may be caused by a poor initialization. As a result of
this the AAM search can converge to a false local minimum. Except for altering
the initialization method, one could also try multiple different initializations (for
instance by using small initial displacements) and subsequently pick the best of
the results.

The current method’s accuracy is suitable for detecting regions of interest such
as bones and joints. If we want to measure JSWs, we will need to be able to detect
the contours more accurately. In Chapter 6 we continue this work with a local
image processing algorithm to detect the joint margins.
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5
Biometrics of the hand skeleton

5.1 Introduction

Large databases of patient records used in clinical trials may contain a significant
number of false entries and other inconsistencies. In the process of data acquisition,
data analysis and administration there are several stages where patient data can
be filed incorrectly. Particularly when information is passed through by paper
forms (illegible handwriting) or manual entry, there is a potential risk for errors,
such as misspelled names, swapped records, and incorrect numbers. As a result
the outcome of a medical trial may be compromised.

There exist several statistical methods to search through databases for unusual
deviations in numbers, but this is less straightforward for other information in
patient records, such as radiographs. In our case, we are interested in verifying
databases of hand radiographs. Our goal is to identify possible errors, such as
double entries (one patient filed under more than one name), wrong patient labels
(different patients filed under the same name), and mirrored images (left and right
mixed up). To accomplish this, we look for characteristic features in the shapes of
the hand bones. Next we use a classification method to compare these ’biometric
features’ of the images in our dataset. Hereafter we determine for each image how
likely it is that it has been filed correctly.

Using the shape of hands for biometric verification and identification is not
new. Similar methods exist for using the outer geometry of the hand [74, 75]. In
[51] it is suggested that hand radiographs can be used for this purpose, but thus
far we are not aware of any other research on this subject.

71



72 Chapter 5. Biometrics of the hand skeleton

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Patient number

N
u
m

b
er

 o
f

im
ag

es

Figure 5.1: Graph displaying the number of available images for each patient entry in
the dataset.

Besides detecting patient database inconsistencies and preventing faulty en-
tries, biometric identification of bones may be useful for forensic applications.
Other applications may be found in the security field. Though x-rays are seldom
used for this purpose, sometimes low dose x-ray scanners are used for searching
people for weapons and contrabands. A biometric identification system could be
a valuable extension to such systems.

5.2 Methods

5.2.1 Data

For our experiments we have used a set of 100 posterior anterior single hand
radiographs. This set consists of 50 pairs of hands originating from 30 patients
diagnosed with RA. Figure 5.1 shows the number of available radiographs per
patient, which varies between one and four image pairs that have been taken with
several years in between. Though most images have been labeled ‘left’ or ‘right’,
we remove this distinction by mirroring all (apparent) left hand images, such that
all thumbs appear on left side of the hand. By this all images can be treated the
same, which also makes it possible to compare both hands with each other.

5.2.2 Biometric features

To be able to compare the radiographs with one another, we make use of contour
descriptions of the metacarpals, proximal and middle phalanges. To obtain these
descriptions, we use the same method of landmark selection as used for the AAMs
as described in Section 4.2.2. This results in 14 contour descriptions of 64 points
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Figure 5.2: The contours of 14 bones (metacarpals, proximal and middle phalanges) are
described by 64 points each.

each, Figure 5.2 shows the locations of these points in one of the radiographs.

As we are merely interested in anatomical, biometric features, we have to
compensate for the variability that is caused by differences in overall pose and
finger positioning. Since generally the hand is placed with the palmar side flat on
the table, the mobility of most joints is considerably reduced. The joints and bone
groups that are relevant to positioning variability are displayed in Figure 5.3. Note
that the phalanges of a finger are mutually in a fixed position when the hand is
placed on a flat surface, and that therefore their mutual position can be considered
as a characteristic feature. This is similar for the fixed block of metacarpals 2–
4. Subsequently, by ‘dissecting’ the articulating parts we obtain seven groups of
landmarks that consist of one ore more bones (Figure 5.4). We have left out the
distal phalanges and the carpal landmarks, as in our data set they have too few
landmarks for adequate contour descriptions.

To remove positioning variability, we subsequently translate and rotate each
group to a common (x, y)-coordinate frame. To enable these operations we define
an alignment axis for each group, as depicted in Figure 5.4.The direction of these
axes are defined by the midline that runs from the proximal to the distal end of the
(most proximal) bone. The midline of the third metacarpal defines the reference
axis of the metacarpal block. The landmarks are translated and rotated such that
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Figure 5.3: Variability in finger positioning due to articulation of the joints. The gray
circles indicate the articulating joints.

Figure 5.4: The selected landmarks of each movable part is centered and rotated to a
uniform position. The arrows indicate the medial axes of the bones used for alignment.
The black dots mark the rotation origins.

their alignment axis is parallel to the y-axis and centered to the origin.

Using the aligned (x, y)-coordinates as characteristic features, we can now de-
scribe the bone contours (of a single hand radiograph) by a feature vector x of N
elements (N = 14 × 64 × 2 = 1792).

x = [x1, . . . , xN , y1, . . . , yN ]T (5.1)
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5.2.3 Classification

To decide whether or not an extracted feature vector originates from a certain
patient, we make use of a likelihood-ratio classifier for Gaussian probability den-
sities [76]. The likelihood ratio Λ can be expressed by

Λ =
p(x|q)
p(x|q) , (5.2)

where p(x|q) is the likelihood that feature vector x belongs to patient q, and p(x|q)
the likelihood that it does not. If we have a sufficiently large dataset of different
patients, such that we may assume that the distribution of a single patient (intra-
patient distribution) does not significantly influence the total distribution, then
p(x|q) = p(x). The likelihood ratio then becomes:

Λ =
p(x|q)
p(x)

. (5.3)

The probability density function for a multivariate normal distribution X ∼
NN (µ,Σ) is given by

f(x) = (2π)−
N

2 |Σ|− 1

2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
, (5.4)

where |Σ| denotes the determinant of the covariance matrix. Now let us assume
that the feature vectors of patient q and the total dataset are both multivariate
normal distributed with means µq and µt, and covariance matrices Σq and Σt,
respectively. We can rewrite the likelihood ratio from Equation 5.3 to

Λ =
|Σq|−

1

2 exp
(
− 1

2 (x − µq)
TΣq

−1(x − µq)
)

|Σt|−
1

2 exp
(
− 1

2 (x − µt)
TΣt

−1(x − µt)
) . (5.5)

The likelihood-ratio can be used to classify any feature vector x by comparing
it to a predefined threshold: If Λ exceeds this threshold, then x is classified as
being of patient q. If not, then it is from another patient. To simplify calculations
with regard to this classification method, we reformulate Equation 5.5 using the
log-likelihood ratio (LLR = −2 lnΛ)

LLR = (x − µq)
TΣq

−1(x − µq) − (x − µt)
TΣt

−1(x − µt) + ln
|Σq|
|Σt|

. (5.6)

Note that the last term is a constant that can be accounted for in the selected
threshold. Thus, what remains is the difference of two squared Mahalanobis dis-
tances [77].

The means and covariance matrices are unknown, and therefore have to be
estimated from our data set. But, for an accurate estimation of the covariance
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matrices, this would require many more training examples (≫ N) than there are
available in the data set.

To overcome this problem, we apply principal component analysis (PCA) on
all samples of the data set [71] and reduce the dimensionality of the transformed
feature vectors by removing the dimensions that express the lowest variance. For
this purpose we use the feature vectors of M examples of the dataset (M depends
on the type of experiment; see Section 5.3) to create matrix X with their overall
mean µT subtracted.

X = [x1 − µT , . . . ,xM − µT ] (5.7)

Through the singular value decomposition (SVD) of X, solving

X = UXSXVT
X , (5.8)

we obtain N × N orthonormal matrix UX , M × M orthonormal matrix VX ,
and N × M non-negative matrix SX with decreasing singular values on the first
diagonal. By taking the first NPCA columns of UX , we can create an M × NPCA

transformation matrix ŨX . The number of dimensions NPCA is chosen such that
the variance displayed in the training set is covered for 95% (in our experiments

NPCA = 25). With ŨX , we can transform the data in X to a new feature space
with NPCA dimensions:

Y = ŨT
XX. (5.9)

Since the number of radiographs available per patient is insufficient to estimate
patient specific covariance matrices (Σq), we estimate the average intra-patient
variance. This is done under the assumption that the intra-patient variations are
similar between patients. First, within the reduced feature space, we define matrix
W by

W = [Y1 − Y1, . . . ,YK − YK ], (5.10)

where Yi is the set of feature vectors of a single patient with mean yi (Yi is a
matrix of the same width as Yi with yi as columns), and K is the number of
patients. Next, by SVD of W we obtain two orthogonal matrices UW and VW ,
and a non-negative diagonal matrix of singular values SW :

W = UW SWVT
W (5.11)

To be able to normalize the intra-patient variance in the NPCA-dimensional feature
space, we can now determine a second transformation matrix UW :

UW =
√

N − 1UWS−1
W . (5.12)

Next, we can maximize the discrimination between the total distribution and
the (average) intra-patient distribution by applying linear discriminant analysis

(LDA) [78]. First, we create a submatrix ŨW from the first NLDA (principal) col-
umn vectors of UW (in our experiments NLDA = 20). If we apply transformation



5.3. Experiments and results 77

matrix ŨW to the feature vectors of Y, we obtain a set of features Z within an
NLDA-dimensional feature space:

Z = ŨT
W

Y (5.13)

If we apply our classification model (Equation 5.6) in this new feature space,
the estimated intra-patient variance will be unity in all dimensions. The total
distribution, on the other hand, will still show correlations. To be able to remove
these correlations, we calculate the SVD of Z:

Z = UZSZVT
Z (5.14)

This gives us an orthogonal transformation matrix UZ and a non-negative diagonal
matrix of singular values SZ . The latter can be used to calculate the (diagonal)
covariance matrix

ΣZ =
1

N − 1
S2

Z . (5.15)

The described sequence of transformations and dimension reductions can be
combined in a single transformation matrix

T = UT
ZŨT

W
ŨT

X . (5.16)

Now, let u and v be the transformed input-feature vectors with subtracted means
of the patient distribution and the total distribution:

u = T(x − µq), (5.17)

v = T(x − µt), (5.18)

where µp is the mean feature vector of a patient to be matched and µt the mean
of the total dataset. Subsequently, we can define a classification score s based on
the LLR (Equation 5.6) by calculating the Mahalanobis distance

s(x) = uTu− vTΣ−1
Z v − ln |ΣZ | . (5.19)

In the ideal case a threshold value should be chosen for the classification score
such that a perfect discrimination can be made. In practice, both distributions
can overlap, making it necessary to determine the desired balance between the
classifier’s sensitivity and specificity.

5.3 Experiments and results

Three different experiments have been performed with the described classification
method to investigate the uniqueness of a hand’s skeletal shape as shown in a
radiograph. The goal of the first experiment is to determine how well single hands
can be discriminated from others in the dataset (including the patient’s other
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hand). Besides the discriminative properties between patients, this experiment
also indicates how well left and right hands can be discriminated. The opposite
has been investigated in the second experiment by matching hands of one side to
the other in order to find the correct pairs. For this we have assumed that both
hands are highly symmetrical. In the last experiment the distinction between left
and right has been left out to discriminate between patient features only.

5.3.1 Cross verification of single hands

For this experiment we cross-verify all radiograhps in the data set to possibly detect
whether images have been filed incorrectly. Errors may be caused by incorrect
patient naming or false left/right labeling. The overall distribution is computed
using all feature vectors of the dataset. As each hand is classified separately, the
intra-patient distribution is computed from the patient data where multiple images
of the same hand were available. For 16 patients only a single pair of radiographs
was available and therefore these could not be used in this computation. Each
radiograph is tested against both (left and right) classes of each patient in the
dataset. To avoid any direct bias of the evaluated feature vector, the vector being
tested is excluded from the computed mean of the corresponding class.

During the first run of this experiment, we found that one pair of radiographs
did not match the others of this specific patient. Instead we found that this pair
showed a good match to the radiographs of another patient. After inquiry in the
originating hospital’s records, our findings were confirmed: it appeared that the
radiographs had been filed incorrectly.

After correcting the dataset for these errors, we repeated the experiment. The
graph on the left of Figure 5.5 displays the resulting true-positive-rate (TPR) and
the true-negative-rate (TNR) in relation to the calculated similarity scores. The
graph on the right shows the receiver operating characteristic (ROC) with the
equal error rate (EER) at 0.19% and the area under curve (AUC) close to one.
The EER is the rate where the false positive rate (FPR) equals the false negative
rate (FNR).

5.3.2 Matching opposing hands

In this experiment we have tested if it is possible to identify patients by their left
hand using the features of their right hand and vice versa. To investigate this, we
first included only the 50 right hand images in the training set for determining
the average intra-patient variability and the individual patient templates. The
remaining 50 left hand images have been tested one by one to fit any of the
patient classes of the training set. The same experiment is repeated with the left
hand images in the training set and the right hands in the test set.

Figure 5.6 shows the combined results of these experiments. Again the left
graph shows the TPR and the TNR, and the right graph the ROC with the EER
at 8.6% and an AUC of 0.971.
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Figure 5.5: First experiment: cross verification of single hands. The graph on the left
displays the TPR and the TNR with respect to the similarity score. The graph on the
right displays the ROC with the AUC and the EER.
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Figure 5.6: Second experiment: matching opposing hands. The left graph displays the
TPR and the TNR with respect to the similarity score. The right displays the ROC with
the AUC and the EER.
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Figure 5.7: Results of third experiment: cross verification of combined hands. The left
graph displays the TPR and the TNR with respect to the similarity score. The right graph
displays the ROC with the AUC and the EER.

5.3.3 Cross verification of combined hands

For this final experiment, intra-patient classes have been formed by omitting the
distinction between left and right hands. By doing this, more examples become
available for the estimation of the average intra-patient distribution, as also patient
data with only one pair of radiographs can be included. This approach is expected
to increase the accuracy of the estimated intra-patient variance at the cost of the
accuracy of the mean of the class. Each radiograph has been cross verified with
all patient classes. As with the first experiment, any direct bias was avoided by
not including the test feature in the calculation of its mean class.

The resulting TPR and the TNR with respect to the similarity score are dis-
played in the left graph of Figure 5.7. The right graph displays the ROC showing
an EER of 2.5% and an AUC of 0.998.

5.4 Discussion and conclusions

In this chapter we have demonstrated a method to extract biometric features from
bone shapes in hand radiographs. To anticipate variability in hand and finger
positioning, we made this method invariant to positioning variability. By applying
a classifier based on the likelihood ratio we were able to verify a patient’s identity
and to detect possible inconsistencies in a patient database with high certainty.
As a proof of concept, we have found an error in our dataset.

Based on the first experiment (Section 5.3.1) we can conclude that there is
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sufficient discriminative information in the bone shapes to distinguish (mirrored)
left and right hands of the same patient. On the other hand, the second ex-
periment (Section 5.3.2) shows that in many cases (8.6% EER) both hands are
sufficiently symmetrical to match one hand with the other. This latter property
may be particularly useful in certain forensic applications. For the third experi-
ment (Section 5.3.3) we combined the properties used in the first two experiments,
and showed that the classifier can be trained such that it is possible to recognize
a patient by any of his hands.

In practice the number of examples per subject is usually small for radiographic
datasets, therefore it is necessary to make use of the average intra-patient vari-
ance instead of the patient specific intra-class variance. Though, we expect that
results improve when a larger dataset is used with more available radiographs per
patient. As with a larger number of examples, the estimations of both the overall
distribution and the average intra-patient distribution become more accurate.
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6
Margin detection

6.1 Introduction

It is essential that joint degenerative diseases, such as RA, are treated in an early
stage, ideally before any irreversible joint damage occurs. To assess effectiveness of
drug-treatment it is necessary to precisely monitor the progression of the disease.
Currently there exist several visual scoring methods [15] to quantify joint damage
in radiographs of hands and feet. In general, these methods are time-consuming
and depend on subjective measurements. The sensitivity to change [24, 26, 27] of
these methods is highly dependent on intra-observer and inter-observer variabil-
ity. As of this reason, in the past two decades researchers have been looking for
automated methods to measure joint damage in a more objective manner (see also
Section 2.4).

An important measurable effect of RA is joint space narrowing. Already in an
early stage of RA, the loss of cartilage in the joints can be determined indirectly
by measuring the joint space width (JSW) [20]: the distance between the joint
margins. Figure 6.1 shows an example of how the JSW decreases with the pro-
gression of RA. It is important to note that the absolute value of the JSW is not
a measure for RA. It is the decrease in JSW over time that provides an indication
of the disease’s activity and progression.

Several researchers have experimented with (partially) automated meth-
ods [32, 35, 37, 15] to measure the JSW in hand radiographs and have shown
that the sensitivity of such methods is higher than manual methods [40]. Though
progress is made in this research, there are currently no methods available for
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Figure 6.1: Follow up series of radiographic images of the second MCP joint of a patient
with progressive RA (from left to right with approximately two years intervals).

practical use. Except for various limitations within these methods, validation is
also difficult due to the absence of a gold standard. In an attempt to work towards
a clinically accepted standard, we work with other researchers in a special interest
group of the international network of Outcome Measures in Rheumatology Clini-
cal Trials (OMERACT) [79]. In this group experiences with different methods are
exchanged and results are compared in order to reach international consensus on
future measurement methods (Section 6.4).

Our goal is to develop an automated method to measure joint space narrowing
in hand radiographs with a high sensitivity to change. In previous research, see
Chapter 4, we have presented a segmentation algorithm to detect the bones in hand
radiographs [93]. We have found that this method was precise enough for detecting
regions of interest such as the joints, but not for quantitative JSW measurements.
In this chapter we proceed with the joints and present a robust and precise method
for detecting joint margins and measuring the distance between them.

6.2 Joint margin detection

For JSW measurements we wish to measure the distance between the surfaces of
the bones that make the joint. Since radiographs are two-dimensional projection
images of three-dimensional structures, the definition of the joint margins is rather
ambiguous. On the other hand this is not truly essential for relative measurements,
providing that the precision and reproducibility of the detection method is suffi-
cient. The reliability of the measurement may also be affected by the positioning
of the hand. Other research [40] has shown that JSW measurements are highly
reproducible, even when there are small variations in the hand positioning.

In the following subsections we present an iterative search method using mod-
ified active shape models [50] which are based on statistical properties of a set of
example images. The detection of joint margins is done within several regions of
interest which are determined from multiple initialization points. We demonstrate
how different shape models can be created for the various joint margins, and how
these models can be applied to detect plausible margin shapes. To find the mar-
gins, we look for nearby joint margins by scanning along lines perpendicular to an
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initial estimate of the margin. For each scan point we use its neighboring pixels
to determine a likelihood score based on a statistical distance measure. Next we
apply a dynamic programming method to find a new margin location which can be
translated to a plausible margin corresponding to the shape model. This process
is repeated for several iterations until the difference between results in consecutive
iterations reaches a minimum or until a maximum number of iterations is reached.
Finally we determine the distance between each margin pair.

6.2.1 Image data set

For this investigation we have used 100 plain single hand radiographs in posteroan-
terior view. These are from both left and right hands of 40 different patients di-
agnosed with RA. For several patients there were multiple image pairs available
of different time points. To be able to use the same method for both hands, the
left hand images were mirrored.

The radiographs have been digitized on a 12-bit grayscale scanner at a resolu-
tion of 600 dots per inch. Linear contrast enhancement was applied such that the
full intensity rage was used. The images were stored in a lossless 8-bit grayscale
format.

The set of images was split randomly into two independent sets of 50 images
of 20 patients; a training set for the extraction of features for setting up the
parameters of the applied statistical methods, and a test set for the experiments.

6.2.2 Initialization

For each hand we measure the JSW at eight locations: at metacarpophalangeal
(MCP) joints 2–5 and at proximal interphalangeal (PIP) joints 2–5. For the de-
tection of the joint locations, we use the method described in Chapter 4 and [93].
With this method we are able to detect the phalanges and metacarpal bones in
most of the images used in this research. A few detection errors were corrected
by manually indicating the initialization points. For a correct working of the JSW
measurement algorithm eight initialization points are required. These points are
defined by the proximal and distal ends of the proximal phalanges and are on the
central axis of the bone (Figure 6.2). As the definition of the location of these
points may be ambiguous, the method allows small deviations up to 1 mm in any
direction.

6.2.3 Margin shape

To prevent the algorithm from finding false edges, we constrain the shapes of
the detectable margins to statistical shape models based on the training set of
50 example radiographs. In these sample images the joint space margins were
manually outlined by an expert. Since it is difficult to define where the joint space
begins and ends, the JSW measurement is limited to a region of 6 mm around the
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Figure 6.2: The proximal and distal ends of the proximal phalanges are used for the
initialization of the joint locations and margin angles.

joint’s center. The central axis of the proximal phalanx, which is defined by the
initialization points (Figure 6.2), is used to determine the centers of the margins.
Others have used different methods [37, 39] to define this region based on the size
and shape of the joint, but we expect better robustness using a fixed region size.
Also, the locations of the joint margins are less clear near the sides of the joint
space, due to the projection view of the joint.

The shape of each joint margin is characterized using N equidistant points
(landmarks). In the shown examples and for our tests we use 25 points (Figure 6.3).
Separate shape models [50] are created for the proximal and distal margins of
all eight joints (MCP 2–5 and PIP 2–5). To remove translation and rotation
variability, all 50 example margin shapes are aligned to a common co-ordinate
frame. This is done by first translating all shapes such that their center of gravity
is on a common origin. Next the shapes are rotated such that the central axis
of the proximal phalanx aligns with the y-axis. The x and y-coordinates of the
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Figure 6.3: The set of training images with manually outlined margins is used to create
the shape model. The proximal and distal margins are both characterized by N equidistant
points over 6 mm around the center of the joint (N = 25).

landmarks of margin shape i are stored in a 2N element vector xi.

x = (x1, x2, . . . , xN , y1, y2, . . . , yN)T (6.1)

The mean shape x̄ is calculated for each margin:

x̄ =
1

50

50∑

i=1

xi. (6.2)

Next, data matrix X is created with vectors xi as columns, and an equal size
matrix X̄ with vectors x̄. We use the singular value decomposition (SVD) [71] of
X − X̄ to find an orthogonal matrix Φ of eigenvectors φi and the corresponding
eigenvalues λi (with λi ≥ λi+1). We truncate Φ to the first Z eigenvectors, such
that the total variance covered in the truncated matrix ΦZ is 99%. In our case
six eigenvectors were sufficient for the MCP joints and 8 for the PIP joints.

Approximations x̃ of x can now be generated using parameter vector s:

x̃ = x̄ + ΦZs. (6.3)

With this parametric description of the margin shapes we can determine the clos-
est possible shape to a set of newly found co-ordinates y. To achieve this, y is
projected into the parameter space to obtain s:

s = ΦZ
T (y − x̄) . (6.4)
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Figure 6.4: For each landmark an intensity profile is extracted along a 6 mm line
perpendicular to the margin shape.

To make sure that only plausible shapes are found, we truncate the shape param-
eters of s such that |si| ≤ 3

√
λi. Following, a new estimate of the margin shape

can be calculated through Equation 6.3.

6.2.4 Margin detection

To detect plausible margin locations, we use a probability score based on the
Mahalanobis distance [77]. To achieve this we use the intensity profiles along lines
perpendicular to an estimated joint margin (Figure 6.4). In the first iteration this
estimate is the mean x̄. Each intensity profile is sampled along a line of 6 mm
using bilinear interpolation at L points with equal spacing sL. To compensate for
differences in image level and contrast settings, we remove any offset and normalize
the intensities with the standard deviation of all intensity values sampled for the
pertinent joint. For each point of the margin shape the resulting intensity profile
is stored in a vector

g = (g1, g2, . . . , gL)T. (6.5)

In our tests we sample the profiles over 6 mm with a spacing of 15 points per
millimeter (thus sL ≈ 0.067mm and L = 91). Next, we determine the mean
profile of the 50 examples that we have in our training set

ḡ =
1

50

50∑

i=1

gi. (6.6)
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Figure 6.5: The left image shows the average intensity profiles of the distal margins
for the MCP-2 joint. The right image shows the corresponding profiles for the proximal
margins.

Figure 6.5 shows all mean profiles of the proximal and the distal margins of the
second MCP joint. The Mahalanobis distance for the profile at margin point n is
then defined as

Dn(gt) =

√
(gt − ḡn)TΣ−1

gn
(gt − ḡn), (6.7)

where Σgn is the covariance matrix of the sample profiles in the training set. For a
good estimate of the inverse covariance matrix in principle we need a large training
set. Therefore we reduce the number of dimensions in a similar manner as we do
for the margin description in Section 6.2.3. For each margin point a data matrix
Gn is created with sample profiles gni as columns, and an equal sized matrix Ḡn

with vectors ḡn as columns. Through the SVD of Gn − Ḡn we find N orthogonal
matrices of eigenvectors Ψn with the eigenvalues λn,i. Next, we truncate Ψn to
the first principal W eigenvectors covering 98% of the variance in the example set.
In our case 20 eigenvectors are sufficient for both the MCP joints and the PIP
joints.

Suppose we have obtained test profile gt, we can transform this to a point gr

in the reduced parameter space by

gr = Ψ̃T
n (hn − ḡn). (6.8)

Since there is no correlation between the elements of un, we can now determine a
probability score by calculating the normalized Euclidean distance in the param-
eter space:

D̂n(gr) =

√√√√
W∑

w=1

grw
2

λnw

. (6.9)
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Figure 6.6: The left image shows the cost matrix. The right image shows the minimum
cumulative cost matrix and minimum cost path, which is traced back from the position of
the minimum in the last row of the matrix.

6.2.5 Search

The search process for possible margin point candidates goes along the direction
of the profile lines. This is done by sampling M profiles that are shifted with step
size sM in both directions. In the tests we use a search length of 6 mm with a
resolution of 15 pixels per millimeter (thus M = 6 × 15 + 1 = 91 and sM = 6/
91 ≈ 0.067 mm).

The extracted profiles are scored with the distance measure of Equations 6.8
and 6.9, which results in a M×N cost matrix D̂. This matrix may indicate multiple
possible margin candidates per row. Therefore, to ensure that the correct margin
points are found and that they are connected, we use a dynamic programming
method [80]. The minimum cost path is found by first calculating the minimum
cumulative cost matrix as

Cm,1 = Dm,1,

Cm,n = min (Cm−k,n−1, ..., Cm+k,n−1) + Dm,n, (6.10)

where k is an integer specifying the connectedness (the number of rows a path
is allowed to travel per subsequent column). For our experiments we used k =
⌈ sL

sM

⌉ = 4 which is approximately the ratio between the spacing of the margin
points (sL) and the size of the search steps (sM ). Next, the path is traced back
along the minimum cost value gradient. Figure 6.6 shows the cost matrix and
the traced minimum cost path in the minimum cumulative cost matrix. With the
minimum cost path we find N new margin points, which we convert using the
method of Section 6.2.3 to a plausible margin shape that corresponds with the
shape model.
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Figure 6.7: The JSW is measured by determining the point-line distances from the
margin points to the closest point on the opposite margin.

Figure 6.8: The mean absolute point-line distances are calculated to determine the
difference between two differently estimated margins.

6.2.6 Convergence

As the search process operates along a series of lines, that are dependent of the
initial margin shape, it is unlikely that the correct margin is found in a single iter-
ation. Furthermore, the margin detection method works best when the intensity
profiles are perpendicular to the actual margin. Therefore several iterations are
necessary to converge to a solution where the change between detected margins
in subsequent iterations is minimal. Due to restrictions in the parametric shape
model, is unlikely that an exact match is found between the fitted margin and the
minimum cost path. This can result in an endless loop between multiple (similar)
solutions. Therefore a maximum is set to the number of iterations. From the tests
we found that five iterations are sufficient for reaching convergence.

6.2.7 Distance measure

To measure the JSW, we determine the average distance between the margins.
Though several proposals have been done by others [35, 39, 54], there is currently
no standard method for measuring the average distance between the joint mar-
gins. A detailed discussion about this topic can be found in Chapter 3. For our
measurements we calculate the average of the point-line distances from all land-
mark points on the proximal margin to the line segments describing the distal
margin and vice versa. Since the points on the margins are equidistant, we can
omit their spacing in the calculation of the average. Figure 6.7 demonstrates how
the point-line distances are determined.

To measure the difference between two detected margins, we use the mean
absolute point-line difference. This is done instead of using the point to point
distance, to allow small differences along the direction of the actual margin. An
example is shown in Figure 6.8.
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Figure 6.9: Example showing the results from the margin detection algorithm. The JSW
measurements have been printed near the joints.

6.3 Experiments and results

The described method was tested on the 50 images of the test set described in
Section 6.2.1. Figure 6.9 shows the results for one of the test images. Almost all
margins were found within a short distance of their assumed locations. In one of
the images the fifth PIP joint was excluded from the results, since it had been
completely deformed and did not have a visible joint space.

6.3.1 Margin detection

For all joints we have tested how well the margins are detected compared to man-
ual outlining. Firstly, we have determined the precision of the manual method
by letting a trained person indicate the joint margins in the 50 test images. This
exercise was repeated a second time by the same person shortly afterwards. As a
measure for the intra-observer variability, we calculated the mean absolute point-
line differences of the indicated margins. We found that the difference was within
0.14 mm for 90% of the margins. Secondly, we simulated repeated measurements
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Figure 6.10: The precision of the margin detection methods as an estimated probability
density function of the mean absolute difference between repeated measurements. The
depicted results are for the manual method, the automated method and the mean absolute
difference between both methods.

for the automated method by inducing small changes in the initialization of the
detection algorithm (Section 6.2.2). The initialization was altered by shifting the
initialization points by 0.5 mm in an arbitrary direction. Also for this method,
we calculated the difference between the margins. For 90% of the margins this
was within 0.071 mm. Thirdly, the difference between the manual and the auto-
mated detection method was determined. This was within 0.12 mm for 90% of
the margins. Figure 6.10 shows the overall results for these three experiments.

The described results are the averages for all detected joint margins. Minor
differences were found between the precisions per joint; see Figure 6.11 showing
the precision of the automated method for the distal and proximal margin of each
joint. Overall the proximal margin is detected slightly more precisely than the
distal margin.

6.3.2 JSW measurements

The repeatability of the JSW measurements was determined for both the au-
tomated and the manual method. The mean differences were close to zero
(∼ 0.002 mm). The absolute differences were within 0.065 mm for the automated
method and 0.20 mm for manual readings for 90% of the measured joints. Be-
tween the two methods the difference was 0.14 mm. Figure 6.12 shows the overall
results. Also for the JSW measurements, there were no considerable differences in
precision between the joints, as can be seen in Figure 6.13.
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Figure 6.11: The median (±1 SD) of the mean absolute point-line difference of the
distal and proximal margins per joint for the automated method.
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Figure 6.12: Repeatability of the JSW measurements as estimated probability density
functions of absolute JSW differences between repeated measurements. Results are shown
for the manual method, the automated method and the absolute difference between both
methods.

6.4 OMERACT exercises

Two exercises were performed in collaboration with other research groups taking
part in a subcommittee of OMERACT. Comprehensive results of these exercises
have been published in [60].

The first exercise involved a radiographic data set of 4 patients, 3 with 2 differ-
ent time-points and one with 4. A comparison was made between 4 different JSW
measurement methods: the method of Angwin [40, 64], Sharp [15], Duryea [81, 37]
and ours (Kauffman [93, 98]). The level of automation differed between methods;
a summary of these methods can be found in Section 2.4. The radiographs of both
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Figure 6.13: Mean difference (±1 SD) between automated and manual JSW measure-
ments per joint.

hands and feet were analyzed for each time-point. We measured MCP joints 2–5,
PIP joints 2–5 and 4 wrist joints. For the feet all metatarsophalangeal (MTP)
joints were measured. To be able to measure the wrist and MTP joints, we ex-
tended our margin detection algorithm using the same method as applied for the
MCP and PIP joints (Section 6.2). Figure 6.14 shows a comparison between the
measurement results of the four different methods. Each point in the graph rep-
resents a measurement for a single joint.

For the second exercise a dataset of digitized radiographs was made available
by the investigators of the COBRA trial [82]. In this trial two different patient
treatment groups had been evaluated using the Sharp/van der Heijde score (SHS)
which is often regarded as a gold standard. A selection was made of 107 patients
and 428 time-points: baseline, 6 months, 1 year and 18 months. To obtain a
single JSW score for one time-point, all measurements were averaged. For our
method we measured MCPs 2–5, PIPs 2–5 and MTPs 1–5. The results showed that
manual scoring by the SHS (joint space narrowing + erosion score) outperformed
all automated methods in discriminating between treatment groups. However,
with regard to the joint space narrowing component of the SHS, the automated
methods outperformed the manual readings.

6.5 Conclusions

We have described and tested a method for detecting joint margins within a pre-
defined region of interest. This method is robust and accurate in cases where the
joint margin is clearly visible. For cases where the joint space has disappeared due
to severe joint damage, the algorithm is unable to estimate the margins correctly.
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Figure 6.14: Results from [60], showing a comparison between the measurements of
methods A (Sharp), B (Kauffman), D (Duryea) and E (Angwin). The top graph shows
the absolute measurements, the bottom graph shows the measured JSW change over time.
The graph legends also report the mean (Mn) and number of performed measurements
(n) for each method. Remark: The MTP measurements were not performed with the
method D. As methods A and E show systematically higher readings than methods B and
D, this may have affected the locations of the MTP readings with respect to the other
measurements.
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Such cases may be detected by measuring the difference between the found mar-
gins in the last two iterations of the search algorithm (a large difference indicates
a poor convergence of the detection algorithm). From this stage on it would be
necessary to use a different method to quantify joint damage.

In Section 6.3.1 we determined that the precision of the automated detection
method is higher than the precision of the manual method. Also we have found that
the differences between the results of both methods were smaller than the precision
of manual readings. This suggests that the automated method is more consistent
in detecting the margins. Considering this, it can be beneficial to recalculate the
means and eigenvector matrices of the intensity profiles using the newly, more
consistently, detected margins (Section 6.2.4).

Figures 6.11 and 6.13 indicate that the absolute precision for each joint is
similar. However, if we consider relative precision, the JSW measurements of the
PIP joints are less precise than those of the MCPs. This is because the JSW of a
PIP joint is on average 30% smaller than that of an MCP joint.

The constraints set by the shape models prevent the detection of false edges,
but also limit the possibility of detecting unusual margin shapes and small erosions.
Therefore several margins were poorly detected. Fortunately, this does not always
have to affect the JSW measurement, since this is determined by averaging and
therefore small aberrations may be leveled out. This effect is noticeable in the
results, as the precision of the JSW measurements is better than that of the
detected margins.

We took part in two exercises to compare our method with other methods.
The first exercise showed some systematic differences between JSW measurements
by automated methods. However, change measured in serial radiographs showed
good agreement, with no observable systematic differences [60]. The results of the
second exercise show that automated JSW measurements can outperform manual
JSW measurements by the SHS. However, with erosion scoring included, the SHS
performs better than automated JSW measurements.



98 Chapter 6. Margin detection



7
Acquisition variability and JSW

measurements

7.1 Introduction

The radiographic representation of an object is for a major part determined by
its orientation with respect to the x-ray device. Therefore, when using projec-
tion radiographs for medical analysis and measurements, one has to pay careful
attention on how a body part is positioned. With repeated radiographic acquisi-
tions, especially when there is a time lapse, it is likely that differences occur in
the positioning of the subject with regard to the x-ray source and the detector.
Consequently, if we investigate a series of consecutive radiographs, we should not
only consider the differences caused by disease activity, but also differences caused
by changes in positioning during the acquisition of the radiograph. With regard
to this latter aspect we can differentiate between two sources of variability. The
first is caused by changes within the x-ray setup, for example the location of the
x-ray source with respect to the detector. The second is caused by the positioning
of the subject, such as differences in orientation and articulation of the joints.

In practice, at least according to our experiences with hand radiography, ac-
quisition settings with regard to positioning are seldom recorded in detail and it is
possible that radiographers deviate from the applicable standard acquisition pro-
tocol (if present). To determine the influence of such deviations, we analyze how
variations in the acquisition setup can affect the outcome of JSW measurements.
In the next section (Section 7.2) we will study the properties of a common acquisi-

99



100 Chapter 7. Acquisition variability and JSW measurements

tion setup and identify the variations that may occur. In the following Section 7.3
we will use simulated projection images to determine how these variations can
affect JSW measurements.

Research on the effects of hand positioning variability has been done by Angwin
et al. in order to determine the precision of radiographic JSW measurements [40].
They investigated the effect of small positioning changes and found that with
their method JSW changes of more than 7% can be detected in individual joints.
Averaging the results across fingers for a single subject decreases the detectable
change to 3%. Their results show that careful positioning is essential to obtain
precise measurements. Because of this, and the results of our study, we conclude
that it makes sense to develop a method to standardize hand positioning in order to
increase the precision of JSW measurements. In Section 7.5 we present a method
to realize this by introducing a positioning aid for hand radiography.

7.2 Analysis of the acquisition setup

To investigate the effects resulting from variations in a typical radiographic ac-
quisition setup, we first analyze a generic model of an x-ray source and detector.
In the case of hand radiography for the purpose of JSW measurements and joint
damage assessment, the hand is generally placed with the palmar side down, flat
on the detector. The x-ray source is positioned roughly one meter from the detec-
tor surface above the center of the hand. In this way the entire hand including the
wrist can be captured in a single image using a rectangular diaphragm which is
preferably kept as small as possible to prevent unnecessary exposure to the radia-
tion. When an acquisition is made from both hands at the same time, the center
point is generally chosen between both hands. As the size of an x-ray source’s
focal sport is relatively small (typically less than 1 mm [83]) with regard to the
distance between the source and target/detector (typically 1 m), we consider that
the x-rays originate from a point source, which leads to a perspective projection.

Source-detector distance Since the hand is placed between the source and the
detector, a minor magnification of the projected image occurs due to the diverging
bundle of x-rays. In this situation the magnification can be calculated as follows:

M =
dtd

dsd − dtd
× 100%, (7.1)

with M the percentage of magnification, dsd the distance between the source and
the detector, and dtd the distance between the target and the detector. Since the
target is three dimensional, this latter distance depends on the projected location
within the target’s volume. To simplify our model, we therefore consider the center
of the volume. If the hand is placed flat on the detector, the mean location of the
MCP and PIP joints will be at approximately 1.5 cm distance from the detector’s
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Figure 7.1: Schematic model of the acquisition setup.

surface. Consequently, with a source–detector distance of 100 cm (and a target–
detector distance of 1.50 cm), the magnification is 1.52%. Figure 7.1 depicts the
model of the setup.

In practice, radiographic measurements are rarely corrected for this type of
magnification, as this effect occurs with each recording and is expected to remain
constant over time when the same setup is used. Since the source-detector distance
is large compared to the object-detector distance, small deviations in the source-
detector distance have no significant effect on the magnification. For example, if
the source-detector distance is set to 90 cm instead of 100 cm, the magnification
becomes 1.69%. The difference in magnification, 0.17%, results in deviations of
about 2.6 micron (for typical JSWs of 1.5 mm), which is small compared to the
pixel spacing (42 micron for a typical scanning resolution of 600 dpi).

The distance between the hand and the detector may also vary between ac-
quisitions. This can be a result of differences in positioning, swelling of joints or
modifications of the detector’s cassette. Such differences are generally in the order
of several millimeters, and have no significant effect on the magnification. For
example, if the joints are located at 2.0 cm above the detector surface instead of
1.5 cm, the magnification increases by 2.04%. As explained in the previous exam-
ple, such a magnification increase has no significant effect on JSW measurements
for commonly used image resolutions.

Projection angles By the term projection angle we refer to the angle of the
path of an x-ray with regard to the orientation of the exposed object. Obviously,
rotation of the object with regard to the source and detector can affect the pro-
jection angle and therefore the depicted projection. In addition, since the x-rays
originate from a point source their angles vary throughout the exposed area. Fig-
ure 7.2 illustrates for a typical x-ray setup, how the angles of the incoming x-rays
vary in the entrance plane of the detector. This illustration shows that not only
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Figure 7.2: The left illustration shows an x-ray point source and the path of the diverging
rays to the detector. The right illustration shows the angles (in degrees) of the x-rays with
the normal of the detector’s surface.

rotational variability in the positioning of the subject affects the projection angle,
but also translations within the detector plane. For example, a shift of 1 cm from
the center of the exposed area, the projection angle changes with arctan( 1

100 ) ≈ 0.6
degrees.

How differences of the projection angle affect the radiographic projections of a
finger joint is difficult to predict. In the next section we investigate this aspect by
analyzing simulated projection images of three dimensional volume data of several
MCP joints.

7.3 Simulated projection images

By rendering perspective projection images from three dimensional CT data we
can simulate how changes of the projection angle affect the representation of a
joint space and its width.
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Figure 7.3: Axis definition with regard to the 3D volume data.

7.3.1 Method

To investigate the influence of the projection angle on the visualization of a joint
space, we use four sets of volume data of single MCP-joints. Each set exist of a
collection of voxels which are defined in a 3D grid. These voxels are parallel to the
pixels in a 2D image. The value of a voxel corresponds to the Hounsfied unit [84],
which is a linear transformation of the linear x-ray attenuation coefficient. As the
required resolution for this exercise is not within reach of common CT scanners,
µCT-scans have been used. These 3D scans have a voxel size of 66 µm, which is
similar to the pixel size of a digitized radiograph. These µCT-scans originate from
a study by Duryea et al. [85] and were kindly provided to us.

Before rendering projection images, we define the spatial axes within the vol-
ume according to the example in Figure 7.3. For 3D structures there are six in-
dependent degrees of freedom in 3D space; three translations and three rotations
corresponding to the axis of each dimension. To simplify the projection model, we
only consider the orientation of the joint and presume that the detector is parallel
to the x-y plane with the source location at 1 m distance on the z axis. The center
of the volume containing the joint is located on the z axis at 1.5 cm above the
detector plane.

As we are interested in orientation differences that may cause a change in the
joint’s appearance, we limit this analysis to rotations around the x and y axes.
Rotations around the z axis occur perpendicular to the plane of the projection,
and are therefore considered irrelevant. The same is the case for translations in the
x-y plane. Translations in the z direction cause a magnification of the projection
as discussed in the previous section.

To generate a projection image from the volume data, we make use of a ren-
dering method called splatting [86]. For this method each voxel is ‘splatted’ onto a
virtual projection plane according to the path of the passing x-ray’s. This process
leaves a footprint for each voxel depending on the voxel’s value and projection
path. The sum of all footprints results in a simulated projection image. The
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Figure 7.4: Illustration of the splatting volume rendering method. Each voxel is ‘splat-
ted’ onto the projection surface leaving a footprint according to the direction of the x-rays.
The combination of footprints forms the projection image.
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Figure 7.5: Generated projection images of an MCP joint originating from micro-CT
data. The upper and lower series show projections for varying rotations over the x-axis
and y-axis respectively.

working of this method is illustrated in Figure 7.4.

For each set of volume data we have generated projection images for rotations
between -10 and 10 degrees around the x and y axis in steps of 1 degree. Fig-
ure 7.5 shows an example series of projections of one of the µCTs. The JSW is
detected and measured in the generated projection images using the margin de-
tection method described in Chapter 6. As only a single joint is visible in each
image and not the entire hand, we have initialized the margin detection algorithm
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Figure 7.6: Detected margins in a generated projection image.

manually by indicating the center of the joint margin. For each dataset this was
done once for the projection image with zero degree rotation. The initializations
of the subsequent rotated projections have been derived successively from one an-
other by the previously detected margins. Figure 7.6 shows the location of the
detected margins for one of the projections.

7.3.2 Results

The JSW measurement results are displayed in the graphs of Figure 7.7. These
results show that for these joints, there are minor JSW variations for y axis rota-
tions. For the x axis the difference in JSW between rotations of -5 and +5 degrees
can be up to 0.5 mm (volume data set B), resulting in a difference of 50 µm per
degree rotation.

7.4 Conclusion

We have noticed that positioning and system setup are rarely recorded and that
it is possible to deviate from a standard acquisition protocol. As a consequence
the analysis of subsequent radiographs becomes more complicated because of vari-
ations in positioning and image appearance. Besides this aspect, we also found
that measurement precision can be affected by positioning and acquisition setup
variability. In the analysis of Section 7.2 we demonstrate that the projection angle
varies over the detector surface, meaning that deviations of several degrees can
occur for different positions of the hand.



106 Chapter 7. Acquisition variability and JSW measurements
JS

W
[m

m
]

X-axis rotation (deg.)

JS
W

[m
m

]

Y-axis rotation (deg.)
0 5 10-5-100 5 10-5-10

0

0.25

0.5

0.75

1.0

0

0.25

0.5

0.75

1.0

A

B

C

D

A

B

C

D

Figure 7.7: Results of the JSW measurements with varying projection angles for four
different volume data sets (A, B, C and D).

The results of Section 7.3.2 show that particularly x axis rotations of the projec-
tion angle can affect the visualized joint and its JSW. The measurement outcomes
of Figure 7.7 indicate that the JSW can vary with 50 µm per degree rotation. As
this variation differs for each joint, it is impossible to develop a generic method to
compensate measurements based on a known projection angle.

Other studies [39, 40] have shown that a precision higher than 0.1 mm can be
achieved for JSW measurements. Our analysis indicates that several degrees of
deviation in the projection angle can possibly result in a few tenths of a millimeter
deviation in the measured JSW. Considering this, we infer that the outcome of
JSW measurements can be significantly affected by differences in positioning and
acquisition methods.

7.5 Recommendation: a positioning aid

According to the conclusions of the previous section, the variability in hand po-
sitioning and acquisition setup can affect the measurement precision of the JSW.
This is not the first time that we notice a negative contribution of positioning
variability; also for our segmentation method (Chapter 4) we find that positioning
variability complicates the detection of bones. Considering these two issues, it
would be practical to find a way to minimize this variability.

In general, positioning variability is caused by the absence of well defined and
observed positioning guidelines, and not by limitations of a patient’s freedom of
movement (although this can be a factor in cases of severe joint damage). Obvi-
ously, it would be desirable to develop a method to standardize the way a hand
is positioned during radiographic acquisitions. In order to realize this, a custom
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Figure 7.8: Photo of the positioning aid.
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Figure 7.9: Peg locations on the HPA.

hand positioning aid (HPA) has been developed.

First prototype

Figure 7.8 shows a photo of the first prototype HPA. The idea for this design has
been inspired by a system that is used to position hands for a hand geometry-based
verification system [74]. The development of the HPA is done in collaboration
with the departments of rheumatology, clinical physics and radiology of the local
hospital, Ziekenhuisgroep Twente (ZGT), in Hengelo. The HPA consists of a
perspex plate with nine pegs at fixed locations. The locations of the pegs have
been chosen symmetrically such that the HPA can be used for both left and right
hands. Figure 7.10 shows the location of the pegs and demonstrates how a hand
is positioned. The hand is moved up until it touches the center peg between
the middle and ring finger. When these fingers are adducted such that they touch
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Figure 7.10: Placement of the hand on the HPA. The dashed cross indicates where the
x-ray beam should be centered.

pegs two and three, metacarpals 2–5 will become fixed to a certain extend by there
limited mutual lateral mobility. The gentle abduction of the remaining fingers up
to the other pegs results in a stable positioning of the rest of the hand. To ensure
a straight and stable positioning of the wrist, the HPA is also provided with a
forearm support.

The bottom plate of the HPA is constructed such that it fits tightly over the
x-ray semiconductor detector (Canon type CXDI 31 BG7-2350) that is used in the
local hospital (see also Section 1.3). In this manner the HPA is always positioned
correctly with regard to the detector. The thickness of the perspex is 4 mm, which
causes some attenuation of the radiation. As the attenuation is homogeneous over
the entire surface of the detector, this is not visible in the radiograph after overall
contrast adjustment. Figure 7.11 shows the appearance of a radiograph taken with
the HPA.

An additional advantage of using the HPA is that it can be equipped with
objects for calibration and quality assessment. The first prototype HPA has been
equipped with an aluminum step wedge and a special peg that can be used to de-
termine the projection angle. The applied aluminum step wedge varies in thickness
in 5 steps (0.7, 1.4, 2.1, 2.8 and 3.5 mm). In combination with the x-ray device
settings such as (wavelength and exposure settings), this is a reliable indicator for
image contrast adjustment and calibration. Figure 7.12 shows a drawing of the
special peg that is used to determine the angle of the incoming x-rays. The peg
has been made of perspex which is highly translucent for x-rays. On top of this
peg a small steel ball has been attached and underneath is a steel ring. When
the incoming x-rays are parallel to the peg, the projection image will show the
location of the ball in the center of the ring as depicted in Figure 7.12. Any angle
deviation will make the ball move out of the center of the ring. In practice it is not
necessary that the radiograph is taken such that the ball is perfectly in the ring’s
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Figure 7.11: Radiograph with use of positioning aid.

center. More important is that the location of the ball with regard to the ring is
the same for each radiograph. This ensures that the projection angle is constant
over time with respect to the position of the hand.

Second prototype

During three months the first prototype HPA has been tested for practical use at
the ZGT hospital. The radiodiagnostic assistants evaluated the HPA as a helpful
instrument and guide for positioning the hands of patients. The HPA proved
to be easy to use for the patient and assistant. Also the radiographic quality
was evaluated positive by radiologists and rheumatologists. Unfortunately, the
construction of the HPA turned out to be too weak for daily use. The bottom
frame was damaged and several pegs were missing. Also the contours indicating
the hand positions had been partly wiped off after cleaning with alcohol.

For the second prototype, named the ZGT FingerFIX (Figure 7.13), several
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Figure 7.12: Angle detection pin.

improvements have been made. The construction of the aid is stronger and more
durable. The pegs have been attached by screw connections (instead of glue), and
can now be replaced by spares. Furthermore the printed hand contours are now
resistant against alcoholic solutions, and also a center cross has been added to
assist with focusing the x-ray beam. For completeness, the FingerFix provides a
short instruction list describing the acquisition protocol.

The ZGT FingerFix will be part of new studies that will be conducted in
cooperation with several other hospitals to collect new data sets. The goal is
to validate that the use of this aid improves image quality resulting in robuster
automated analysis and more measurements.
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Figure 7.13: Images of the ZGT FingerFIX.
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8
Revealing radiographic changes

8.1 Introduction

As presented in the overview in Chapter 2, several scoring methods have been
proposed to quantify joint damage in hand radiographs [15]. Some make use of
classification scores for joint erosions and deformations, for example the Larsen
score [16], and the Sharp/van der Heijde method [1]. Other methods are based on
relative or absolute measurements, for example determining the carpal/metacarpal
ratio [19], joint space width measurement and erosion volume estimation.

With the abovementioned methods disease activity is determined indirectly by
looking at changes in scores, rather than detecting differences directly by compar-
ing the successive radiographic images. However, when two follow-up radiographs
are displayed side by side, it is easy to overlook small erosions or differences in
bone density. A comparative analysis becomes even more difficult when images
have been acquired through different devices or with altered settings. Even a
change in the contrast and brightness settings may affect a reader’s opinion.

As nowadays more and more hospitals are working with digitized radiographs,
new possibilities for radiographic analysis are becoming available. Radiographic
analysis on a computer screen has several advantages; for example, regions of in-
terest can easily be magnified, the contrast and brightness settings can be changed
and special filters can be applied to enhance certain image features. In this chap-
ter we show how some of these new possibilities can be applied to make a direct
comparison between radiographic images.

The method that we propose is based on image subtraction in order to reveal

113
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changes in bone structures between follow-up hand radiographs. This is accom-
plished by aligning a region of interest within both images and calculating the
difference between the pixel intensities. In the field of image processing, this align-
ment procedure is referred to as ‘image registration’ [87]. The large variability in
hand positioning makes it difficult to register two images entirely. Overlapping
bone parts near the joints and differences in projection angle cause interfering
artifacts when stringent elastic transformations are applied to one of the images.
Therefore the analysis is restricted to rigid regions of interest, such as the individ-
ual bones.

The images to be compared have been taken at different time instances, typi-
cally with several years in between. It is not uncommon with such data that the
radiographs have been acquired differently: the hospital’s equipment may have
been renewed or its settings changed, the patient might have gone to another
hospital or the acquisition protocol may have been altered. This makes it diffi-
cult to compare radiographs directly, since illumination settings such as contrast
and brightness may be different. We compensate for such differences by deter-
mining an intensity transformation function based on the joint histogram of the
relevant images. Finally, the difference is determined through image subtraction
and displayed to the operator by means of a color overlay in the radiograph that
is examined.

8.2 Subtraction of radiographs

To illustrate our method we take two follow-up hand radiographs that have been
made with several years in between. The third proximal phalanx is selected for
this example, since it shows a clearly visible erosion at its distal end in the second
radiograph. For the selection of the bone, we apply the algorithm described in
Chapter 4 to detect the approximate bone outline in both images. Figure 8.1
shows the detected outline of the selected bone in both images.

Next, we extract a rectangular region of interest (ROI) that fits the bones with
3 mm of extra space around the outlines. A rigid transformation is used to warp
these ROIs to two new images A and B, as shown in Figure 8.2. Both images
are now roughly aligned. Due to small deviations in the detected contours, a
small error may still be present. To further improve alignment, we apply an image
registration method.

8.2.1 Image registration

A medical image registration algorithm [88] is used to register the first image to
the second. Although bones are mostly rigid, we allow subtle elastic transforma-
tions in the registration algorithm. This is necessary to correct for small, but
smooth, contour variations caused by differences between the projection angles
during acquisitions. By smoothing the deformation field we prevent the registra-
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Figure 8.1: Two radiographs of the same patient; the left is the baseline image, the right
has been made several years later. The detected outline of the third proximal phalanx is
shown in both images.

tion algorithm from applying strong local deformations that might conceal ero-
sions. Figure 8.3 shows the effect of the calculated deformation field on a mesh.
The result of the registration is displayed in the checkerboard image of Figure 8.4.

8.2.2 Intensity transformation function

After registration of the images, we want to compare the image intensities through
subtraction. Since we do not have any information on how the images have been
acquired, the relation between their intensity values is unknown. If there is only
a difference in contrast and brightness, this relation would be linear. However, it
is likely that this relation is non-linear, as a result of differences in device setup.
For example, a different kV-setting would result in an exponential relation (see
Section 1.3).

The goal is to find an intensity transformation function that changes the pixel
values of image B such that we can compare it to the intensities of reference image
A. Since both images have been aligned, we can make use of the joint distribution
fA,B(a, b), where a and b are values of corresponding pixels in image A and B.
Figure 8.5 shows the joint distribution of the example images in a gray-scale image.
The bit depth of the used images is 8-bit, therefore the axes have been divided
in 256 equal size bins. The higher the displayed intensity in the distribution, the
higher the occurrence.
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Figure 8.2: The upper image shows reference image A, the baseline image, and the
lower shows B made several years later.

Figure 8.3: The deformation field applied to a mesh.

We estimate the intensity transfer function S(t) by fitting a piecewise polyno-
mial form of a cubic spline interpolant [89] to the data of the joint distribution.
Interpolation is done between three points defined by the knot vector t with the



8.2. Subtraction of radiographs 117

Figure 8.4: Checkerboard view of registered source and target images.
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Figure 8.5: The joint distribution in gray intensities and the fitted transformation func-
tion S(t) displayed by the curve. The circles are the locations of the knots in vector
t.

following conditions:

t1 = 0 (8.1)

0 < t2 < 1 (8.2)

t3 = 1 (8.3)

S(t1) < S(t2) < S(t3) (8.4)
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Figure 8.6: Difference image normalized by the average intensity of the bone in image A

The begin and end conditions S′(t1) and S′(t3) (where S′(t) is the first derivative
of S(t)) are constrained to positive values, such that the curve is increasing for
t = [0, 1]. The function is fitted to the joint distribution in a least squares manner
using a reflective Newton method [90]. The fitted spline of the example is also
displayed in Figure 8.5.

Next, we apply the intensity transformation to image B and calculate difference
image D by subtracting image A:

D = S(B) − A (8.5)

Since we do not have any information which we can use to quantify the image
intensities, we normalize the difference image by dividing it by the average intensity
of the bone in image A. We note that this average may be inaccurate, since the
intensity scale is likely to be slightly nonlinear. The resulting difference image is
shown in Figure 8.6. A color mapping is used such that a bone density decrease
is colored red and a bone density increase blue.

In this example the erosion is clearly visible, but in other cases this represen-
tation may still be difficult to interpret: the reader is easily distracted by small
deviations caused by noise and differences in illumination. To enhance the read-
ability of the results we add an alpha channel (transparency map) to the the
colored difference image and use image B as background [91]. The alpha channel
image αD is constructed from the difference image D by taking the absolute value
and mapping the values between a lower and upper threshold (τ1 and τ2) to values
between 0 and 1:

αD =





0 if |D| ≤ τ1
1

τ2−τ1

(|D| − τ1) if τ1 < |D| < τ2

1 if |D| ≥ τ2

(8.6)

The thresholds τ1 and τ2 are free to chose and can be set to any value desired by
the operator.

Figure 8.7 displays the alpha channel for described example. This alpha channel
is used to mix A and D by means of the following equation:

M = A(1 − αD) + αDD (8.7)
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Figure 8.7: Alpha channel αD.
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Figure 8.8: Mixed image: image A and D with applied alpha channel. The difference
is displayed as the percentage of the average intensity of the bone at baseline. Applied
thresholds for alpha channel: τ1 = 0.1 and τ2 = 0.3.

The resulting mixed image M of our example is displayed in Figure 8.8.
As can be seen in the result, there are some strong differences visible at the

adjacent bones. Optionally, we can remove these regions by applying a mask using
the initially detected contours. But this also means that possible changes near the
edges of bone become invisible.

One may also note the thin blue edge at the metacarpal head. It is likely that
this is the result of joint space narrowing, which indicates the loss of cartilage in
the joint.

8.3 Results

Experiments with several follow-up radiographs show that erosions and changes
in bone mineral density can be visualized. Figure 8.9 shows four follow-up radio-
graphs of a third metacarpal bone. The top image is the baseline image and is
used as the reference image. The following three images have been made after 1,
2 and 5 years. The pixel size is 0.25 mm for all images.

The described method was applied as follows. Firstly, we register the baseline
image to the other three images. Secondly, we correct the intensities of the latter
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Figure 8.9: Original series of follow-up images of a third metacarpal bone. The baseline
image is at the top, followed by images made after 1 year, 2 years and 5 years.

three images to match the baseline image; see Figure 8.10. Finally, for each im-
age we calculated the difference with the baseline image. Figure 8.11 shows the
differences as overlays. The alpha channel thresholds are: τ1 = 0.1 and τ2 = 0.4.

8.4 Discussion

Our experiments show that image subtraction techniques can be used to visualize
local changes in bone density. Such changes are important indicators of disease
activity and may reflect the effects of treatments. The presented method of dis-
playing intensity differences by means of a colored overlay offers a useful aid to
the reader during radiographic analysis.

Within the current method the joint distribution is used to estimate the inten-
sity transformation function for matching the illumination settings between both
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Figure 8.10: The same images as in Figure 8.9, but with applied intensity transforma-
tion to match the intensities of the baseline image.

images. With this method it is difficult to detect uniform changes in bone density.
Also, large changes between consecutive images may result in a poor estimation of
the intensity transformation function. Ideally a calibration object should be placed
in the image area during image acquisition. Matching the illumination properties
of the calibration object instead of the bones may solve this problem. In future
research we plan to use an aluminum wedge for this purpose.

Currently, intensity differences have been quantified with a relative measure: as
a percentage of the average bone intensity at baseline. For absolute measurements
there should be an accurate bone density measurement for at least one of the time
instances. For example, this could be done with a DEXA scan.
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Figure 8.11: Images as in Figure 8.10 with difference overlay. The difference is in
percentage of the average intensity of the bone at baseline.



9
Conclusions and recommendations

9.1 Conclusions

This thesis describes various aspects with regard to joint damage assessment in
hand radiographs. The developed methods for segmentation, joint space width
(JSW) measurement and erosion detection are generic and can also be applied for
the feet and other body parts. By creating anatomical models based on projection
images of the hand skeleton, we have found robust solutions for image processing
problems related to positioning variability and image quality. In addition, bio-
metric features obtained from the bone contours proved to be useful for detecting
errors in x-ray data sets.

With regard to JSW measurements, we have investigated several factors that
influence the reliability and precision of measurement outcomes. Supported by
analysis and simulations, we have demonstrated that, apart from the used image
processing method, also the applied quantification method and the x-ray acquisi-
tion protocol are relevant.

In the following paragraphs we evaluate our findings by answering the research
questions listed in Section 1.5.

Is it possible and feasible to measure joint space narrowing and erosion
with sufficient precision and reproducibility to replace measurements by
human experts?

As presented in this thesis, extensive automation of radiographic analysis, such
as measuring joint space narrowing and quantifying bone damage, is possible
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(Chapters 6 and 8). Although the success rate of the developed JSW measure-
ment method is promising, verification of the results by an operator is advisable.
However, the level of expertise needed for this task is considerably less compared
to what is required for established scoring methods such as the Sharp/van der
Heijde score (SHS). Besides that manual JSW measurements are very inefficient
considering the amount of time and effort needed, our results indicate that auto-
mated measurements have a better reproducibility and precision (Section 6.3). In
addition, the results of automated measurements minimize the influence of sub-
jectivity.

In practice, erosions are seldom truly quantified, because erosion volumes are
difficult to estimate using projection radiographs. Instead current methods (such
as the SHS) rely on scores assigned through visual inspection by an expert. Gen-
erally, these scores are based on a complex combination of visible features, such as
erosions, joint space narrowing, deformations and bone density differences. With
the presented image subtraction technique it is possible to detect the development
of bone erosions (Section 8.4). Furthermore, by standardizing the radiographic
acquisition protocol and using calibration aids, it is possible to quantify bone loss.

In spite of the many advantages offered by automated methods, it is unlikely
that they can replace assessment by human experts completely. Automated meth-
ods are bound to the specific conditions and tasks for which they have been de-
signed. This can possibly result in false measurements and unnoticed points of
importance, especially in cases of abnormal and severe deviations.

What is the validity of a newly developed score compared to the current
gold standard, the Sharp/van der Heijde score?

To determine the performance of our JSW measurement method, we have
worked together with several other research groups that are developing similar
methods. A comparison between four automated methods showed some system-
atic differences between JSW measurements. However, change measured in serial
radiographs showed good agreement, with no observable systematic differences
(Section 6.4 and [60]).

The developed JSW measurement method has also been tested on a large
dataset of radiographs that had been assessed according to the SHS. With regard
to the joint space narrowing component of the SHS, in most cases our automated
method shows better results than manual readings. However, the combined SHS
(joint space narrowing + erosion score) outperforms the automated method [60].

What is the optimal combined score for joint damage in hand and feet
caused by RA?

As the extent of joint space narrowing and erosion formation varies between
patients, it is difficult to come to an overall and optimal combined measure. The
established SHS offers a well validated combination between JSW measurements
and erosion scoring. However, with regard to JSW measurements, automated
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measurements perform better than manual readings [60]. This suggest that the
SHS can be improved by replacing the manual JSW readings with the automated
JSW measurements. This improvement is particularly relevant in cases where
erosions are not predominant.

If a positioning aid is used for radiographic acquisition, it is possible to make
quantitative measurements of bone loss using the described image subtraction
technique (Chapter 8). Whether such measurements can be used as a supplement
or replacement for the erosion score of the SHS, is open for future research.

9.2 Recommendations

How can an automated measurement system be applied practically
within rheumatology?

With regard to automated measurement systems, there are two different applica-
tion areas within rheumatology. The first is in clinical trials, where large quantities
of radiographic image data require objective analysis. Automated measurement
systems shorten the time that is spent on radiographic assessment, thereby re-
ducing the required validation period for new treatment methods. The second
application area is within the rheumatology clinic. A rheumatologist or radiolo-
gist may be served by having additional tools to objectively monitor the disease
progression of his patients. This also enables the follow-up of therapeutic interven-
tions. Obviously, the second application area involves a larger user group, setting
higher demands on the implementation of a measurement system than within a
controlled research area. Such a system must be robust and user friendly. A prac-
tical implementation will also demand seamless integration and coexistence with
existing software that is used in the clinic.

For automated assessment it is important that the radiographic acquisition
protocol is standardized. This can be effectively achieved by using a positioning
aid (Section 7.5). In this way positioning variability can be minimized, which will
improve the segmentation results and the precision of JSW measurements. An ad-
ditional advantage is that quality indicators and reference objects can be included,
which can be used to verify and assess imaging parameters later on. As already
indicated, the use of a positioning aid also enables image subtraction techniques,
thereby creating new research opportunities for quantitative measurements of bone
loss.

The image data that has been used for this thesis, originated from film radio-
graphs scanned at a high resolution (42 micron pixel size). The new generation
of digital x-ray detectors have a lower resolution (typically 100 micron pixel size),
but generally display a higher image contrast due to digital filtering techniques.
How this affects the performance of our image processing algorithms is not yet
clear. To investigate this, it is important that over a period of several years a
large set of new image data is acquired. Preferably a new training set of manually
segmented image data should be created, in order to optimize our segmentation
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and margin detection methods. For a reliable validation, it is important that the
joint margins are indicated independently by a panel of experienced radiographic
experts.
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Summary

Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to severe
joint damage, particularly in the wrist, fingers and toes. To prevent irreversible
joint damage, it is crucial that RA is treated in an early stage. The effect of
treatment methods can differ per patient. Therefore it is important that disease
activity is carefully monitored, such that a treatment can be altered if necessary.
In order to visualize joint damage, radiographs of hands and feet are often used.
In the past fifty years several methods have been developed to express visible joint
damage in a quantifiable score. In general these methods are time-consuming and
depend on subjective visual readings.

With the introduction of the computer and the availability of digitized radio-
graphs, researchers have been looking for new automated methods to measure
the progression of joint damage. A measurable effect in early RA is joint space
narrowing which is caused by degradation of the cartilage between the bones. A
considerable part of this thesis deals with this subject.

Firstly, different methods are evaluated on how to quantify the joint space
width in an accurate and robust manner. Hereby methods developed by others
have been evaluated. Subsequently, we present several image processing methods
for analyzing radiographs. The first is a segmentation method based on a model
of the hand skeleton. With this model it is possible to detect the locations of
the bones and the joints in radiographs. The second part describes a method
that accurately detects the bone margins within the joint. Finally, the joint space
width is calculated using the detected joint margins. This method is evaluated by
comparing measurement results with both manual measurements, and automated
measurements developed by others. It is shown that automated measurements are
more precise than manual measurements.

It was observed from the image data, that a large variability of hand positioning
is allowed during x-ray acquisition. This does not only complicate automated
analysis, but can also have an effect on the projection angle within a specific joint.
In successive radiographs, a change in the projection angle can negatively affect
the precision of measurements. By using projection simulations it is demonstrated
that this effect is relevant. Therefore, we recommend to standardize the protocol
for radiographic acquisitions. A special positioning aid has been designed, which
can be used to place a hand in a standard position.

Another measurable effect of RA is the development of bone damage in the
form of erosions. To be able to measure this effect, we investigated the possibility
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to make subtraction measurements between successive radiographs that have been
taken with some time in between. It is demonstrated that different radiographs
of the same bone can be compared using an image registration algorithm. By
determining the difference between two images developing erosions can be revealed.
However, with the current available radiographs it is not yet possible to quantify
bone damage. We expect that in the future this will become feasible by applying
the recommended positioning aid during x-ray acquisition.



Samenvatting

Reumatöıde artritis (RA) is een chronische ontstekingsziekte die kan leiden tot
ernstige gewrichtsschade en verminderde mobiliteit. Behandeling in een vroeg sta-
dium van deze ziekte is belangrijk, zodat onomkeerbare gewrichtsschade voorko-
men kan worden. De effectiviteit van behandelmethoden kan per patiënt verschil-
len. Daarom is het noodzakelijk om de ontwikkeling van het ziektebeeld nauwkeu-
rig te volgen, zodat behandelmethoden eventueel tijdig aangepast kunnen worden.
In het geval van RA wordt vaak gebruik gemaakt van röntgenfoto’s van handen en
voeten, om een beeld te krijgen van veranderingen in het skelet. In de afgelopen
vijftig jaar zijn verschillende methoden ontwikkeld om de in röntgenfoto’s waar-
neembare gewrichtsschade te kunnen vertalen in een score. Deze methoden zijn
gewoonlijk gebaseerd op visuele analyse door geoefende radiologen of reumatolo-
gen. Het gebruik van deze methoden neemt over het algemeen veel tijd in beslag,
en bovendien is de nauwkeurigheid en objectiviteit van resultaten afhankelijk van
de persoon die de metingen uitvoert.

Met de komst van de computer en de mogelijkheid om röntgenfoto’s te digi-
taliseren, is men op zoek gegaan naar nieuwe automatiseerbare methoden om de
ontwikkeling van gewrichtsschade te kunnen meten. Een meetbaar effect in een
vroeg stadium van RA, is de versmalling van gewrichtsspleten als gevolg van de af-
name van tussenliggend kraakbeen. In dit proefschrift wordt uitgebreid aandacht
besteed aan dit onderwerp.

Allereerst is onderzocht op welke manier gewrichtsspleten robuust en nauwkeu-
rig gemeten kunnen worden. Hierbij is gekeken naar de verschillen tussen reeds
ontwikkelde methoden van diverse onderzoekspartijen. Vervolgens is een beeldver-
werkingsmethode ontwikkeld om röntgenfoto’s te analyseren. Een eerste onderdeel
bestaat uit een segmentatiemethode, welke is gebaseerd op een model van het ske-
let van de menselijke hand. Hiermee is het mogelijk om botten en gewrichten in een
röntgenfoto te lokaliseren. Een tweede onderdeel bestaat uit een algoritme waar-
mee met hoge nauwkeurigheid de botranden van gewrichten gedetecteerd kunnen
worden. Met behulp van de gevonden botranden wordt vervolgens de wijdte van
de gewrichtsspleet bepaald. Door meetresultaten te vergelijken met zowel hand-
matige metingen als met de resultaten van methoden ontwikkeld door derden,
is aangetoond dat automatische gewrichtsspleetmetingen nauwkeuriger resultaten
opleveren dan handmatige.

Bij de analyse van röntgenfoto’s is geconstateerd dat tijdens de röntgenopname
een grote variabiliteit in handpositionering is toegestaan. Behalve dat dit de au-
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tomatische analyse bemoeilijkt, kan dit ook van invloed zijn voor de projectiehoek
van een specifiek gewricht. In opeenvolgende foto’s kan een verandering van de
projectiehoek de nauwkeurigheid van een meting negatief bëınvloeden. Met be-
hulp van projectiesimulaties is aangetoond dat dit effect relevant is. Daaruit volgt
de aanbeveling om het protocol voor het maken van röntgenfoto’s te standaardise-
ren. Om dit te kunnen realiseren is een hulpmiddel ontworpen, waarmee een hand
eenvoudig in een standaard positie geplaatst kan worden.

Een ander meetbaar effect van RA is het ontstaan van schade aan het bot in de
vorm van erosies. Om dit effect te kunnen meten is onderzocht of gebruik gemaakt
kan worden van verschilmetingen tussen röntgenfoto’s die met tussenperioden zijn
gemaakt. Door het toepassen van een beeldregistratiemethode is gebleken dat het
mogelijk is om verschillende röntgenopnamen van een bot met elkaar te vergelijken.
Door het bepalen van het verschil kan ontstane schade worden gedetecteerd. Met
de huidige beelddata is het nog niet mogelijk om botschade te kwantificeren. De
verwachting is dat dit in de toekomst wel mogelijk wordt door toepassing van het
aanbevolen positioneringshulpmiddel bij de röntgenopname.
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